Einführung
Hallo zusammen, ich schreibe diesen Beitrag, um mein Wissen zu teilen, während ich weiterhin etwas über Designmuster lerne. Heute werde ich das Factory Method Pattern vorstellen, ein Entwurfsmuster, das häufig in realen Anwendungen verwendet wird. Wenn mein Beitrag Fehler enthält, können Sie ihn gerne unten kommentieren. Ich werde ihn gerne korrigieren und aktualisieren.
Factory-Methodenmuster stellt eine Schnittstelle zum Erstellen von Objekten in einer Oberklasse bereit, ermöglicht es Unterklassen jedoch, den Typ der zu erstellenden Objekte zu ändern.
Problem
Angenommen, Sie haben eine Bankanwendung und erstellen eine Funktion zum Überweisen von Geld über verschiedene Methoden wie Banküberweisung, Paypal-Überweisung usw.
Bevor wir das Factory-Methode-Muster verwenden, untersuchen wir das Szenario ohne es.
Ich werde ein in Java implementiertes Beispiel geben.
Situation: Person1 sendet Geld über eine Überweisungsmethode (Banküberweisung oder PayPal-Überweisung) an Person2.
Ordnerstruktur:
problem/ ├─ BankApp.java ├─ service/ │ ├─ PaypalTransferPayment.java │ ├─ BankTransferPayment.java ├─ data/ │ ├─ Person.java
Erstellen Sie in der Hauptanwendung zwei Personen mit Standardgeldbeträgen.
package problem; import problem.data.Person; public class BankApp { public static void main(String[] args) { Person person1 = new Person("John", 1000); Person person2 = new Person("Jane", 500); } }
Erstellen Sie die Klassen BankTransferPayment und PaypalTransferPayment.
package problem.service; import problem.data.Person; public class BankTransferPayment { public void processPayment(Person fromAccount, Person toAccount, float amount) { fromAccount.withdraw(amount); toAccount.deposit(amount); System.out.println("Bank transfer payment success."); } }
package problem.service; import problem.data.Person; public class PaypalPayment { public void processPayment(Person fromAccount, Person toAccount, float amount) { fromAccount.withdraw(amount); toAccount.deposit(amount); System.out.println("Paypal transfer payment success."); } }
Implementieren Sie die Logik in der Hauptfunktion.
package problem; import problem.data.Person; import problem.service.BankTransferPayment; import problem.service.PaypalPayment; public class BankApp { public static void main(String[] args) { Person person1 = new Person("John", 1000); Person person2 = new Person("Jane", 500); String paymentMethod = "BANK_TRANSFER"; if (paymentMethod.equals("BANK_TRANSFER")) { BankTransferPayment bankTransferPayment = new BankTransferPayment(); bankTransferPayment.processPayment(person1, person2, 100); System.out.println("===Method bank_transfer==="); System.out.println(person1.getName() + " has " + person1.getAmount()); System.out.println(person2.getName() + " has " + person2.getAmount()); } else if (paymentMethod.equals("PAYPAL")) { PaypalPayment paypalPayment = new PaypalPayment(); paypalPayment.processPayment(person1, person2, 100); System.out.println("===Method paypal==="); System.out.println(person1.getName() + " has " + person1.getAmount()); System.out.println(person2.getName() + " has " + person2.getAmount()); } } }
Probleme mit der aktuellen Implementierung:
- Wiederholungscode: Die Prozess-Zahlungsmethodenlogik wird für jede Zahlungsmethode wiederholt.
- Enge gekoppelter Code: Die Anwendung muss die Zahlungsmethodenobjekte selbst erstellen, was eine Erweiterung der Anwendung erschwert.
- Skalierbarkeitsprobleme: Wenn neue Zahlungsmethoden hinzugefügt werden, wird der Quellcode komplexer und schwieriger zu warten.
Lösung
Die Lösung für die obige Situation besteht darin, das Factory-Methodenmuster zu verwenden. Wie wenden wir es also an?
Im Beispiel oben:
- Jeder if-else-Block ruft die Methode „processPayment“ auf, was zu sich wiederholendem Code führt.
- Objekte werden basierend auf der Zahlungsartbedingung erstellt, wodurch der Code durch übermäßige if-else-Anweisungen unübersichtlich wird.
Um diese Probleme zu lösen, wird das Factory-Methode-Muster Schritt für Schritt implementiert.
Ordnerstruktur (Lösung):
solution/ ├─ BankApp.java ├─ service/ │ ├─ payments/ │ │ ├─ Payment.java │ │ ├─ PaymentFactory.java │ │ ├─ BankTransferPayment.java │ │ ├─ PaypalTransferPayment.java ├─ data/ │ ├─ Person.java
Schritt 1: Zahlungsschnittstelle erstellen, allgemeine Methode ProcessPayment deklarieren
package solution.service.payments; import solution.data.Person; // Step 1: Create an interface for the payment public interface Payment { void processPayment(Person fromAccount, Person toAccount,float amount); }
Schritt 2: Erstellen Sie die Klassen BankTransferPayment und PaypalTransferPayment, um die Zahlungsschnittstelle zu implementieren.
package solution.service.payments; import solution.data.Person; // Step 2: Create a class that implements the Payment interface public class BankTransferPayment implements Payment { @Override public void processPayment(Person fromAccount, Person toAccount, float amount) { fromAccount.withdraw(amount); toAccount.deposit(amount); System.out.println("Bank transfer payment success."); } }
package solution.service.payments; import solution.data.Person; public class PaypalPayment implements Payment{ @Override public void processPayment(Person fromAccount, Person toAccount, float amount) { fromAccount.withdraw(amount); toAccount.deposit(amount); System.out.println("Paypal transfer payment success."); } }
Schritt 3: PaymentFactory-Klasse erstellen. Diese Klasse ist für die Erstellung von Objekten basierend auf der Zahlungsartbedingung verantwortlich.
package solution.service.payments; public class PaymentFactory { public Payment createPayment(String paymentType) { if (paymentType == null) { return null; } if (paymentType.equalsIgnoreCase("BANK_TRANSFER")) { return new BankTransferPayment(); } else if (paymentType.equalsIgnoreCase("PAYPAL")) { return new PaypalPayment(); } return null; } }
Schritt 4: Verwenden Sie die Factory in der Hauptanwendung.
Ändern Sie die Hauptfunktion, um das Factory-Methodenmuster zu verwenden.
problem/ ├─ BankApp.java ├─ service/ │ ├─ PaypalTransferPayment.java │ ├─ BankTransferPayment.java ├─ data/ │ ├─ Person.java
Vorteile der Verwendung des Factory-Methodenmusters
- Der Code ist sauberer und strukturierter.
- Wiederholte Aufrufe von „processPayment“ in mehreren if-else-Blöcken werden eliminiert.
- Die Objekterstellung wird an die Fabrik delegiert, wodurch die Wartbarkeit verbessert wird.
Bonus
Damit die PaymentFactory-Klasse dem Open/Closed-Prinzip (von SOLID-Prinzipien) entspricht, können Sie einen dynamischen Registrierungsmechanismus mithilfe des Strategiemusters implementieren.
PaymentFactory.java aktualisiert:
package problem; import problem.data.Person; public class BankApp { public static void main(String[] args) { Person person1 = new Person("John", 1000); Person person2 = new Person("Jane", 500); } }
Verwendung der aktualisierten Fabrik in der Hauptanwendung.
package problem.service; import problem.data.Person; public class BankTransferPayment { public void processPayment(Person fromAccount, Person toAccount, float amount) { fromAccount.withdraw(amount); toAccount.deposit(amount); System.out.println("Bank transfer payment success."); } }
Durch die Anwendung dieses Ansatzes folgt der Code dem Offen/Geschlossen-Prinzip und ermöglicht das Hinzufügen neuer Zahlungsmethoden, ohne die PaymentFactory-Logik zu ändern.
Ich hoffe, dieser Beitrag wird Ihnen hilfreich sein.
Referenzen:
Guru-Design-Muster
Das obige ist der detaillierte Inhalt vonDas Factory-Methodenmuster verstehen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Aufstrebende Technologien stellen sowohl Bedrohungen dar und verbessert die Plattformunabhängigkeit von Java. 1) Cloud Computing- und Containerisierungstechnologien wie Docker verbessern die Unabhängigkeit der Java -Plattform, müssen jedoch optimiert werden, um sich an verschiedene Cloud -Umgebungen anzupassen. 2) WebAssembly erstellt Java -Code über Graalvm, wodurch die Unabhängigkeit der Plattform erweitert wird, muss jedoch mit anderen Sprachen um die Leistung konkurrieren.

Verschiedene JVM -Implementierungen können die Unabhängigkeit von Plattformen bieten, ihre Leistung ist jedoch etwas unterschiedlich. 1. OracleHotSpot und OpenJDKJVM können in der Plattformunabhängigkeit ähnlich erfolgen, aber OpenJDK erfordert möglicherweise eine zusätzliche Konfiguration. 2. IBMJ9JVM führt eine Optimierung für bestimmte Betriebssysteme durch. 3.. Graalvm unterstützt mehrere Sprachen und erfordert zusätzliche Konfiguration. 4. Azulzingjvm erfordert spezifische Plattformanpassungen.

Die Unabhängigkeit der Plattform senkt die Entwicklungskosten und verkürzt die Entwicklungszeit, indem es denselben Code -Satz auf mehreren Betriebssystemen ausführt. Insbesondere manifestiert es sich als: 1. Reduzieren Sie die Entwicklungszeit, es ist nur ein Codesatz erforderlich; 2. Reduzieren Sie die Wartungskosten und vereinen Sie den Testprozess; 3.. Schnelle Iteration und Teamzusammenarbeit, um den Bereitstellungsprozess zu vereinfachen.

Java'SplatformIndependenceFacilitateCodereuseByAllowingByteCodetorunonanyPlatformWitHajvm.1) EntwicklungscanwriteCodeonceforconsistentBehavioracrossplattforms.2) AUFTURET ISREITUNG ISRECTIONSUCDEDESCODEDOSNEWRITED.3)) und

Um plattformspezifische Probleme in Java-Anwendungen zu lösen, können Sie die folgenden Schritte ausführen: 1. Verwenden Sie die Systemklasse von Java, um die Systemeigenschaften anzuzeigen, um die laufende Umgebung zu verstehen. 2. Verwenden Sie die Dateiklasse oder das Paket von Java.nio.file, um Dateipfade zu verarbeiten. 3. Laden Sie die lokale Bibliothek gemäß den Bedingungen des Betriebssystems. 4. Verwenden Sie VisualVM oder JProfiler, um die plattformübergreifende Leistung zu optimieren. 5. Stellen Sie sicher, dass die Testumgebung durch Docker -Containerisierung mit der Produktionsumgebung übereinstimmt. 6. Verwenden Sie GitHubactions, um automatisierte Tests auf mehreren Plattformen durchzuführen. Diese Methoden tragen dazu bei, plattformspezifische Probleme in Java-Anwendungen effektiv zu lösen.

Der Klassenlader stellt die Konsistenz und Kompatibilität von Java-Programmen auf verschiedenen Plattformen durch ein einheitliches Klassendateiformat, dynamische Lade-, übergeordnete Delegationsmodell und plattformunabhängige Bytecode und erreicht Plattformunabhängigkeit.

Der vom Java-Compiler generierte Code ist plattformunabhängig, aber der Code, der letztendlich ausgeführt wird, ist plattformspezifisch. 1. Java-Quellcode wird in plattformunabhängige Bytecode zusammengestellt. 2. Die JVM wandelt Bytecode für eine bestimmte Plattform in den Maschinencode um und stellt den plattformübergreifenden Betrieb sicher, aber die Leistung kann unterschiedlich sein.

Multithreading ist für die moderne Programmierung wichtig, da es die Reaktionsfähigkeit und die Nutzung der Ressourcen verbessern und komplexe gleichzeitige Aufgaben erledigen kann. JVM sorgt für die Konsistenz und Effizienz von Multithreads auf verschiedenen Betriebssystemen durch Thread Mapping, Planungsmechanismus und Synchronisationssperrmechanismus.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),