Kauf mir einen Kaffee☕
*Mein Beitrag erklärt MS COCO.
CocoDetection() kann den MS COCO-Datensatz wie unten gezeigt verwenden:
*Memos:
- Das 1. Argument ist root(Required-Type:str oder pathlib.Path):
*Memos:
- Es ist der Weg zu den Bildern.
- Ein absoluter oder relativer Pfad ist möglich.
- Das 2. Argument ist annFile(Required-Type:str oder pathlib.Path):
*Memos:
- Es ist der Pfad zu den Anmerkungen.
- Ein absoluter oder relativer Pfad ist möglich.
- Das dritte Argument ist transform(Optional-Default:None-Type:callable).
- Das 4. Argument ist target_transform(Optional-Default:None-Type:callable).
- Das 5. Argument ist transforms(Optional-Default:None-Type:callable).
from torchvision.datasets import CocoDetection cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json" ) cap_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/captions_train2014.json", transform=None, target_transform=None, transforms=None ) ins_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/instances_train2014.json" ) pk_train2014_data = CocoDetection( root="data/coco/imgs/train2014", annFile="data/coco/anns/trainval2014/person_keypoints_train2014.json" ) len(cap_train2014_data), len(ins_train2014_data), len(pk_train2014_data) # (82783, 82783, 82783) cap_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/captions_val2014.json" ) ins_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/instances_val2014.json" ) pk_val2014_data = CocoDetection( root="data/coco/imgs/val2014", annFile="data/coco/anns/trainval2014/person_keypoints_val2014.json" ) len(cap_val2014_data), len(ins_val2014_data), len(pk_val2014_data) # (40504, 40504, 40504) test2014_data = CocoDetection( root="data/coco/imgs/test2014", annFile="data/coco/anns/test2014/test2014.json" ) test2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/test2015.json" ) testdev2015_data = CocoDetection( root="data/coco/imgs/test2015", annFile="data/coco/anns/test2015/test-dev2015.json" ) len(test2014_data), len(test2015_data), len(testdev2015_data) # (40775, 81434, 20288) cap_train2014_data # Dataset CocoDetection # Number of datapoints: 82783 # Root location: data/coco/imgs/train2014 cap_train2014_data.root # 'data/coco/imgs/train2014' print(cap_train2014_data.transform) # None print(cap_train2014_data.target_transform) # None print(cap_train2014_data.transforms) # None cap_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, # [{'image_id': 9, 'id': 661611, # 'caption': 'Closeup of bins of food that include broccoli and bread.'}, # {'image_id': 9, 'id': 661977, # 'caption': 'A meal is presented in brightly colored plastic trays.'}, # {'image_id': 9, 'id': 663627, # 'caption': 'there are containers filled with different kinds of foods'}, # {'image_id': 9, 'id': 666765, # 'caption': 'Colorful dishes holding meat, vegetables, fruit, and bread.'}, # {'image_id': 9, 'id': 667602, # 'caption': 'A bunch of trays that have different food.'}]) cap_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, # [{'image_id': 25, 'id': 122312, # 'caption': 'A giraffe eating food from the top of the tree.'}, # {'image_id': 25, 'id': 127076, # 'caption': 'A giraffe standing up nearby a tree '}, # {'image_id': 25, 'id': 127238, # 'caption': 'A giraffe mother with its baby in the forest.'}, # {'image_id': 25, 'id': 133058, # 'caption': 'Two giraffes standing in a tree filled area.'}, # {'image_id': 25, 'id': 133676, # 'caption': 'A giraffe standing next to a forest filled with trees.'}]) cap_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'image_id': 30, 'id': 695774, # 'caption': 'A flower vase is sitting on a porch stand.'}, # {'image_id': 30, 'id': 696557, # 'caption': 'White vase with different colored flowers sitting inside of it. '}, # {'image_id': 30, 'id': 699041, # 'caption': 'a white vase with many flowers on a stage'}, # {'image_id': 30, 'id': 701216, # 'caption': 'A white vase filled with different colored flowers.'}, # {'image_id': 30, 'id': 702428, # 'caption': 'A vase with red and white flowers outside on a sunny day.'}]) ins_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, # [{'segmentation': [[500.49, 473.53, 599.73, ..., 20.49, 473.53]], # 'area': 120057.13925, 'iscrowd': 0, 'image_id': 9, # 'bbox': [1.08, 187.69, 611.59, 285.84], 'category_id': 51, # 'id': 1038967}, # {'segmentation': ..., 'category_id': 51, 'id': 1039564}, # ..., # {'segmentation': ..., 'category_id': 55, 'id': 1914001}]) ins_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[437.52, 353.33, 437.87, ..., 437.87, 357.19]], # 'area': 19686.597949999996, 'iscrowd': 0, 'image_id': 25, # 'bbox': [385.53, 60.03, 214.97, 297.16], 'category_id': 25, # 'id': 598548}, # {'segmentation': [[99.26, 405.72, 133.57, ..., 97.77, 406.46]], # 'area': 2785.8475500000004, 'iscrowd': 0, 'image_id': 25, # 'bbox': [53.01, 356.49, 132.03, 55.19], 'category_id': 25, # 'id': 599491}]) ins_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'segmentation': [[267.38, 330.14, 281.81, ..., 269.3, 329.18]], # 'area': 47675.66289999999, 'iscrowd': 0, 'image_id': 30, # 'bbox': [204.86, 31.02, 254.88, 324.12], 'category_id': 64, # 'id': 291613}, # {'segmentation': [[394.34, 155.81, 403.96, ..., 393.38, 157.73]], # 'area': 16202.798250000003, 'iscrowd': 0, 'image_id': 30, # 'bbox': [237.56, 155.81, 166.4, 195.25], 'category_id': 86, # 'id': 1155486}]) pk_train2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) pk_train2014_data[1] # (<pil.image.image image mode="RGB" size="640x426">, []) pk_train2014_data[2] # (<pil.image.image image mode="RGB" size="640x428">, []) cap_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, # [{'image_id': 42, 'id': 641613, # 'caption': 'This wire metal rack holds several pairs of shoes and sandals'}, # {'image_id': 42, 'id': 645309, # 'caption': 'A dog sleeping on a show rack in the shoes.'}, # {'image_id': 42, 'id': 650217, # 'caption': 'Various slides and other footwear rest in a metal basket outdoors.'}, # {'image_id': 42, # 'id': 650868, # 'caption': 'A small dog is curled up on top of the shoes'}, # {'image_id': 42, # 'id': 652383, # 'caption': 'a shoe rack with some shoes and a dog sleeping on them'}]) cap_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, # [{'image_id': 73, 'id': 593422, # 'caption': 'A motorcycle parked in a parking space next to another motorcycle.'}, # {'image_id': 73, 'id': 746071, # 'caption': 'An old motorcycle parked beside other motorcycles with a brown leather seat.'}, # {'image_id': 73, 'id': 746170, # 'caption': 'Motorcycle parked in the parking lot of asphalt.'}, # {'image_id': 73, 'id': 746914, # 'caption': 'A close up view of a motorized bicycle, sitting in a rack. '}, # {'image_id': 73, 'id': 748185, # 'caption': 'The back tire of an old style motorcycle is resting in a metal stand. '}]) cap_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'image_id': 74, 'id': 145996, # 'caption': 'A picture of a dog laying on the ground.'}, # {'image_id': 74, 'id': 146710, # 'caption': 'Dog snoozing by a bike on the edge of a cobblestone street'}, # {'image_id': 74, 'id': 149398, # 'caption': 'The white dog lays next to the bicycle on the sidewalk.'}, # {'image_id': 74, 'id': 149638, # 'caption': 'a white dog is sleeping on a street and a bicycle'}, # {'image_id': 74, 'id': 150181, # 'caption': 'A puppy rests on the street next to a bicycle.'}]) ins_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, # [{'segmentation': [[382.48, 268.63, 330.24, ..., 394.09, 264.76]], # 'area': 53481.5118, 'iscrowd': 0, 'image_id': 42, # 'bbox': [214.15, 41.29, 348.26, 243.78], 'category_id': 18, # 'id': 1817255}]) ins_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, # [{'segmentation': [[134.36, 145.55, 117.02, ..., 138.69, 141.22]], # 'area': 172022.43864999997, 'iscrowd': 0, 'image_id': 73, # 'bbox': [13.0, 22.75, 535.98, 609.67], 'category_id': 4, # 'id': 246920}, # {'segmentation': [[202.28, 4.97, 210.57, 26.53, ..., 192.33, 3.32]], # 'area': 52666.3402, 'iscrowd': 0, 'image_id': 73, # 'bbox': [1.66, 3.32, 268.6, 271.91], 'category_id': 4, # 'id': 2047387}]) ins_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[321.02, 321.0, 314.25, ..., 320.57, 322.86]], # 'area': 18234.62355, 'iscrowd': 0, 'image_id': 74, # 'bbox': [61.87, 276.25, 296.42, 103.18], 'category_id': 18, # 'id': 1774}, # {'segmentation': ..., 'category_id': 2, 'id': 128367}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 1751664}]) pk_val2014_data[0] # (<pil.image.image image mode="RGB" size="640x478">, []) pk_val2014_data[1] # (<pil.image.image image mode="RGB" size="565x640">, []) pk_val2014_data[2] # (<pil.image.image image mode="RGB" size="640x426">, # [{'segmentation': [[301.32, 93.96, 305.72, ..., 299.67, 94.51]], # 'num_keypoints': 0, 'area': 638.7158, 'iscrowd': 0, # 'keypoints': [0, 0, 0, 0, ..., 0, 0], 'image_id': 74, # 'bbox': [295.55, 93.96, 18.42, 58.83], 'category_id': 1, # 'id': 195946}, # {'segmentation': ..., 'category_id': 1, 'id': 253933}, # ... # {'segmentation': ..., 'category_id': 1, 'id': 1751664}]) test2014_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) test2014_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) test2014_data[2] # (<pil.image.image image mode="RGB" size="480x640">, []) test2015_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) test2015_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) test2015_data[2] # (<pil.image.image image mode="RGB" size="480x640">, []) testdev2015_data[0] # (<pil.image.image image mode="RGB" size="640x480">, []) testdev2015_data[1] # (<pil.image.image image mode="RGB" size="480x640">, []) testdev2015_data[2] # (<pil.image.image image mode="RGB" size="640x427">, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import torch def show_images(data, main_title=None): file = data.root.split('/')[-1] if data[0][1] and "caption" in data[0][1][0]: if file == "train2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=0.9, fontsize=14) x_axis = 0.02 x_axis_incr = 0.325 fs = 10.5 elif file == "val2014": plt.figure(figsize=(14, 6.5)) plt.suptitle(t=main_title, y=0.94, fontsize=14) x_axis = 0.01 x_axis_incr = 0.32 fs = 9.4 for i, (im, ann) in zip(range(1, 4), data): plt.subplot(1, 3, i) plt.imshow(X=im) plt.title(label=ann[0]["image_id"]) y_axis = 0.0 for j in range(0, 5): plt.figtext(x=x_axis, y=y_axis, fontsize=fs, s=f'{ann[j]["id"]}:\n{ann[j]["caption"]}') if file == "train2014": y_axis -= 0.1 elif file == "val2014": y_axis -= 0.07 x_axis += x_axis_incr if i == 2 and file == "val2014": x_axis += 0.06 plt.tight_layout() plt.show() elif data[0][1] and "segmentation" in data[0][1][0]: if file == "train2014": fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 4)) elif file == "val2014": fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 5)) fig.suptitle(t=main_title, y=1.0, fontsize=14) for (im, anns), axis in zip(data, axes.ravel()): for ann in anns: for seg in ann['segmentation']: seg_tsors = torch.tensor(seg).split(2) seg_lists = [seg_tsor.tolist() for seg_tsor in seg_tsors] poly = Polygon(xy=seg_lists, facecolor="lightgreen", alpha=0.7) axis.add_patch(p=poly) px = [] py = [] for j, v in enumerate(seg): if j%2 == 0: px.append(v) else: py.append(v) axis.plot(px, py, color='yellow') x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor='r', facecolor='none', zorder=2) axis.add_patch(p=rect) axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) fig.tight_layout() plt.show() elif not data[0][1]: if file == "train2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=0.9, fontsize=14) elif file == "val2014": plt.figure(figsize=(14, 5)) plt.suptitle(t=main_title, y=1.05, fontsize=14) elif file == "test2014" or "test2015": plt.figure(figsize=(14, 8)) plt.suptitle(t=main_title, y=0.9, fontsize=14) for i, (im, _) in zip(range(1, 4), data): plt.subplot(1, 3, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images(data=cap_train2014_data, main_title="cap_train2014_data") show_images(data=ins_train2014_data, main_title="ins_train2014_data") show_images(data=pk_train2014_data, main_title="pk_train2014_data") show_images(data=cap_val2014_data, main_title="cap_val2014_data") show_images(data=ins_val2014_data, main_title="ins_val2014_data") show_images(data=pk_val2014_data, main_title="pk_val2014_data") show_images(data=test2014_data, main_title="test2014_data") show_images(data=test2015_data, main_title="test2015_data") show_images(data=testdev2015_data, main_title="testdev2015_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image>
Das obige ist der detaillierte Inhalt vonCocoDetection in PyTorch (1). Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

NumpyisessentialfornumericalComputingInpythonduetoitsSpeed, GedächtnisEffizienz und kompetentiertemaMatematical-Funktionen.1) ITSFACTBECAUSPERFORMATIONSOPERATIONS.2) NumpyarraysSaremoremory-Effecthonpythonlists.3) iTofferSAgyarraysAremoremory-Effizieren

ContInuuousMemoryAllocationScrucialforAraysBecauseAltoLowsFofficy und Fastelement Access.1) iTenablesconstantTimeAccess, O (1), Duetodirectaddresscalculation.2) itimProvesefficienceByallowing -MultipleTeLementFetchesperCacheline.3) Es wird gestellt

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Dreamweaver Mac
Visuelle Webentwicklungstools

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung
