


Einführung
Eine Frage, die Benutzern, die auf die watsonx.ai-LLMs zugreifen, sehr oft gestellt wird, lautet: „Wie stellen wir die Sampling-Parameter ein?“ !
Eigentlich ist es ganz einfach.
Abtastparameter (oder Generierungsparameter)
- Greifen Sie auf Ihre watsonx.ai-Instanz zu.
- Klicken Sie auf „Prompt Lab öffnen“. Klicken Sie im Eingabeaufforderungslabor auf beiden Registerkarten auf das Parametersymbol (das Symbol ganz rechts, wie abgebildet).
Sie können das eingestellte LLM ändern (das zuvor verwendete oder das standardmäßig eingestellte).
- Sobald das Parameterdialogfeld geöffnet ist, können Sie diese nach Bedarf einstellen.
- Sobald die Parameter festgelegt sind, wählen Sie auf denselben Werkzeugsymbolen „Code anzeigen >“.
Die Schnittstelle bietet drei Arten der Code-Einbettungsimplementierung der Parameter; Curl, Node.js und Python wie in den Beispielen unten.
curl "https://us-south.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29" \ -H 'Content-Type: application/json' \ -H 'Accept: application/json' \ -H "Authorization: Bearer ${YOUR_ACCESS_TOKEN}" \ -d '{ "input": "systemYou are Granite, an AI language model developed by IBM in 2024. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.\nassistant", "parameters": { "decoding_method": "sample", "max_new_tokens": 200, "min_new_tokens": 100, "random_seed": 42, "stop_sequences": [], "temperature": 0.7, "top_k": 50, "top_p": 1, "repetition_penalty": 1 }, "model_id": "ibm/granite-3-8b-instruct", "project_id": "the one you get" }'
export const generateText = async () => { const url = "https://us-south.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"; const headers = { "Accept": "application/json", "Content-Type": "application/json", "Authorization": "Bearer YOUR_ACCESS_TOKEN" }; const body = { input: "systemYou are Granite, an AI language model developed by IBM in 2024. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.\nassistant", parameters: { decoding_method: "sample", max_new_tokens: 200, min_new_tokens: 100, random_seed: 42, stop_sequences: [], temperature: 0.7, top_k: 50, top_p: 1, repetition_penalty: 1 }, model_id: "ibm/granite-3-8b-instruct", project_id: "the-one-you-get" }; const response = await fetch(url, { headers, method: "POST", body: JSON.stringify(body) }); if (!response.ok) { throw new Error("Non-200 response"); } return await response.json(); }
import requests url = "https://us-south.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29" body = { "input": """systemYou are Granite, an AI language model developed by IBM in 2024. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior. assistant""", "parameters": { "decoding_method": "sample", "max_new_tokens": 200, "min_new_tokens": 100, "random_seed": 42, "temperature": 0.7, "top_k": 50, "top_p": 1, "repetition_penalty": 1 }, "model_id": "ibm/granite-3-8b-instruct", "project_id": "the-one-you-get" } headers = { "Accept": "application/json", "Content-Type": "application/json", "Authorization": "Bearer YOUR_ACCESS_TOKEN" } response = requests.post( url, headers=headers, json=body ) if response.status_code != 200: raise Exception("Non-200 response: " + str(response.text)) data = response.json()
Die einzige Information, die vom Entwickler angepasst werden sollte, ist das Zugriffstoken.
Et voilà ?
Abschluss
Die watsonx.ai-Plattform macht es Anwendungsentwicklern sehr einfach, den Satz von LLM-Sampling-Parametern anzupassen.
Das obige ist der detaillierte Inhalt vonWie stellt man einfach alle „Sampling-Parameter' oder „Generierungsparameter' für Anwendungen mit Watsonx ein?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.

Python und C haben signifikante Unterschiede in der Speicherverwaltung und -kontrolle. 1. Python verwendet die automatische Speicherverwaltung, basierend auf der Referenzzählung und der Müllsammlung, um die Arbeit von Programmierern zu vereinfachen. 2.C erfordert eine manuelle Speicherverwaltung und liefert mehr Kontrolle, aber die Komplexität und das Fehlerrisiko. Welche Sprache zu wählen sollte, sollte auf Projektanforderungen und Teamtechnologie -Stack basieren.

Zu den Anwendungen von Python im wissenschaftlichen Computer gehören Datenanalyse, maschinelles Lernen, numerische Simulation und Visualisierung. 1.Numpy bietet effiziente mehrdimensionale Arrays und mathematische Funktionen. 2. Scipy erweitert die Numpy -Funktionalität und bietet Optimierungs- und lineare Algebra -Tools. 3.. Pandas wird zur Datenverarbeitung und -analyse verwendet. 4.Matplotlib wird verwendet, um verschiedene Grafiken und visuelle Ergebnisse zu erzeugen.

Ob die Auswahl von Python oder C von den Projektanforderungen abhängt: 1) Python eignet sich aufgrund seiner prägnanten Syntax und reichhaltigen Bibliotheken für schnelle Entwicklung, Datenwissenschaft und Skripten; 2) C ist für Szenarien geeignet, die aufgrund seiner Zusammenstellung und des manuellen Speichermanagements eine hohe Leistung und die zugrunde liegende Kontrolle erfordern, wie z. B. Systemprogrammierung und Spielentwicklung.

Python wird in Datenwissenschaft und maschinellem Lernen häufig verwendet, wobei hauptsächlich auf seine Einfachheit und ein leistungsstarkes Bibliotheksökosystem beruhen. 1) Pandas wird zur Datenverarbeitung und -analyse verwendet, 2) Numpy liefert effiziente numerische Berechnungen, und 3) Scikit-Learn wird für die Konstruktion und Optimierung des maschinellen Lernens verwendet. Diese Bibliotheken machen Python zu einem idealen Werkzeug für Datenwissenschaft und maschinelles Lernen.

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Dreamweaver CS6
Visuelle Webentwicklungstools