Im vorherigen Beitrag dieser Serie haben wir gesehen, wie die Reihenfolge, in der wir Speicherblöcke zur Wiederverwendung auswählen, zu einem größeren oder geringeren Speicherverbrauch führen kann, und wir haben unsere Funktionen geändert, um dies zu vermeiden Abfall. Aber wir müssen ein anderes, noch schwerwiegenderes Problem lösen: Manchmal kann ein sehr großer Speicherblock den Platz belegen, den mehrere kleinere Blöcke nutzen könnten. Betrachten Sie den folgenden Fall, in dem wir einen großen Teil des Speichers zuweisen, ihn wieder freigeben und dann zwei viel kleinere Blöcke zuweisen:
void *ptr1 = abmalloc(128); void *ptr2 = abmalloc(8); abfree(ptr1); void *ptr3 = abmalloc(8); void *ptr4 = abmalloc(8);
Hier haben wir einen freien 128-Byte-Speicherblock, und wenn wir einen Block von nur 8 Bytes zuweisen, sind alle 128 Bytes nicht mehr verfügbar. Wenn wir einen weiteren 8-Byte-Block zuweisen, muss der Heap erneut wachsen. Dies ist keine effiziente Speichernutzung.
Für diesen Fall gibt es mindestens zwei beliebte Lösungen. Eine effizientere Methode ist die Verwendung von bins: Listen, die Blöcke nach Größe gruppieren. Dies ist ein ausgefeilterer und effizienterer Ansatz, aber komplexer. Eine andere, einfachere Möglichkeit besteht darin, einen großen Block zu finden und ihn in kleinere Blöcke aufzuteilen. Wir werden diesen Ansatz verfolgen.
Aber denken Sie daran: einfacher bedeutet nicht unbedingt einfach ;-)
Erstes Refactoring
Bevor wir beginnen, führen wir eine kleine Umgestaltung durch. Derzeit führt die Funktion header_new() zwei Dinge aus: Sie reserviert mehr Speicher für einen neuen Block und initialisiert seinen Header, indem er die Metadaten und Zeiger auf den vorherigen Block setzt. Der Teil der Initialisierung des Headers könnte nützlich sein, also extrahieren wir ihn. Wir werden zwei neue Funktionen erstellen, um die Lesbarkeit zu verbessern:
- Die header_plug()-Funktion, die den initialisierten Block an den vorherigen und nächsten Block „anschließt“.
- Die Funktion header_init(), die die Anfangswerte der Metadaten des Blocks (Größe und Verfügbarkeit) festlegt.
So sehen sie aus:
void header_init(Header *header, size_t size, bool available) { header->size = size; header->available = available; } void header_plug(Header *header, Header *previous, Header *next) { header->previous = previous; if (previous != NULL) { previous->next = header; } header->next = next; if (next != NULL) { next->previous = header; } }
Jetzt müssen wir nur noch header_new() ändern, um diese neuen Funktionen zu verwenden:
Header *header_new(Header *previous, size_t size, bool available) { Header *header = sbrk(sizeof(Header) + size); header_init(header, size, available); header_plug(header, previous, NULL); return header; }
(Zusätzlich können wir die Zeile last-> previous->next = last; aus der abmalloc()-Funktion entfernen, da header_plug() das jetzt erledigt.)
Blöcke teilen
Mit diesen Tools erstellen wir die Funktion header_split(). Bei gegebenem Header und einer erforderlichen Mindestgröße teilt diese Funktion den Speicherblock in zwei Teile, wenn der ursprüngliche Block groß genug ist, um
aufzunehmen- die erforderliche Größe,
- ein neuer Header für den neuen Block und
- etwas zusätzlicher Speicher.
Zuerst prüfen wir, ob der Block groß genug ist:
Header *header_split(Header *header, size_t size) { size_t original_size = header->size; if (original_size >= size + sizeof(Header)) {
Wenn diese Bedingung erfüllt ist, teilen wir den Block. Zuerst reduzieren wir die Größe des aktuellen Blocks, indem wir die Größe eines Headers und den von abmalloc:
angeforderten Speicherplatz subtrahieren
void *ptr1 = abmalloc(128); void *ptr2 = abmalloc(8); abfree(ptr1); void *ptr3 = abmalloc(8); void *ptr4 = abmalloc(8);
Dadurch bleibt nach dem aktuellen Block ein Speicherplatz übrig, den wir zum Erstellen des neuen Blocks verwenden. Wir berechnen den Zeiger für diesen neuen Block:
void header_init(Header *header, size_t size, bool available) { header->size = size; header->available = available; } void header_plug(Header *header, Header *previous, Header *next) { header->previous = previous; if (previous != NULL) { previous->next = header; } header->next = next; if (next != NULL) { next->previous = header; } }
Da wir nun den Zeiger auf den neuen Block haben, initialisieren wir seinen Header mit header_init():
Header *header_new(Header *previous, size_t size, bool available) { Header *header = sbrk(sizeof(Header) + size); header_init(header, size, available); header_plug(header, previous, NULL); return header; }
Und wir verbinden den neuen Block mit dem vorherigen und nächsten Block mithilfe von header_plug():
Header *header_split(Header *header, size_t size) { size_t original_size = header->size; if (original_size >= size + sizeof(Header)) {
Wenn der ursprüngliche Block der letzte war, ist der neue Block jetzt der letzte, also aktualisieren wir den letzten Zeiger:
header->size = original_size - size - sizeof(Header);
Zuletzt geben wir den neuen Block zurück:
Header *new_header = header + sizeof(Header) + header->size;
Wenn der Originalblock nicht groß genug ist, geben wir einfach den Originalblock zurück:
header_init(new_header, size, true);
abmalloc() aktualisieren
Jetzt müssen wir nur noch zur Funktion abmalloc() zurückkehren und an der Stelle, an der wir einen verwendbaren Block finden, header_split() aufrufen, um zu versuchen, ihn zu teilen:
header_plug(new_header, header, header->next);
Wenn der Block geteilt werden kann, wird der neue Block zurückgegeben. Andernfalls wird der ursprüngliche Block beibehalten und wie zuvor zurückgegeben.
Hinweis zur Blockaufteilung
Beachten Sie, dass wir den neuen Block am Ende des ursprünglichen Blocks erstellt haben. Wir hätten ihn am Anfang erstellen können, aber durch die Erstellung des neuen verwendeten Blocks am Ende bleibt der neue freie Block näher an den älteren Blöcken. Auf diese Weise wird es beim nächsten Aufruf von abmalloc() zuerst gefunden.
Das Aufteilen großer Speicherblöcke ist ein Fortschritt, aber es gibt ein gegenteiliges Problem: Kleine Speicherblöcke können zu Fragmentierung führen, während größere Anfragen dazu führen, dass der Heap wächst. Wir werden im nächsten Beitrag sehen, wie wir das lösen können.
Das obige ist der detaillierte Inhalt vonImplementierung von malloc() und free() – Aufteilen großer Blöcke. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

C# verwendet den automatischen Müllsammlungsmechanismus, während C die manuelle Speicherverwaltung verwendet. Der Müllkollektor von 1. C#verwaltet automatisch den Speicher, um das Risiko eines Speicherlecks zu verringern, kann jedoch zu einer Leistungsverschlechterung führen. 2.C bietet eine flexible Speicherregelung, die für Anwendungen geeignet ist, die eine feine Verwaltung erfordern, aber mit Vorsicht behandelt werden sollten, um Speicherleckage zu vermeiden.

C hat immer noch wichtige Relevanz für die moderne Programmierung. 1) Hochleistungs- und direkte Hardware-Betriebsfunktionen machen es zur ersten Wahl in den Bereichen Spieleentwicklung, eingebettete Systeme und Hochleistungs-Computing. 2) Reiche Programmierparadigmen und moderne Funktionen wie Smart -Zeiger und Vorlagenprogrammierung verbessern seine Flexibilität und Effizienz. Obwohl die Lernkurve steil ist, machen sie im heutigen Programmierökosystem immer noch wichtig.

C -Lernende und Entwickler können Ressourcen und Unterstützung von Stackoverflow, Reddits R/CPP -Community, Coursera und EDX -Kursen, Open -Source -Projekten zu Github, professionellen Beratungsdiensten und CPPCON erhalten. 1. Stackoverflow gibt Antworten auf technische Fragen. 2. Die R/CPP -Community von Reddit teilt die neuesten Nachrichten; 3.. Coursera und EDX bieten formelle C -Kurse; 4. Open Source -Projekte auf Github wie LLVM und Boost verbessern die Fähigkeiten; 5. Professionelle Beratungsdienste wie Jetbrains und Perforce bieten technische Unterstützung; 6. CPPCON und andere Konferenzen helfen Karrieren

C# eignet sich für Projekte, die eine hohe Entwicklungseffizienz und plattformübergreifende Unterstützung erfordern, während C für Anwendungen geeignet ist, die eine hohe Leistung und die zugrunde liegende Kontrolle erfordern. 1) C# vereinfacht die Entwicklung, bietet Müllsammlung und reichhaltige Klassenbibliotheken, die für Anwendungen auf Unternehmensebene geeignet sind. 2) C ermöglicht den direkten Speicherbetrieb, der für Spielentwicklung und Hochleistungs-Computing geeignet ist.

C Gründe für die kontinuierliche Verwendung sind seine hohe Leistung, breite Anwendung und sich weiterentwickelnde Eigenschaften. 1) Leistung mit hoher Effizienz. 2) weit verbreitete: Glanz in den Feldern der Spieleentwicklung, eingebettete Systeme usw. 3) Kontinuierliche Entwicklung: Seit seiner Veröffentlichung im Jahr 1983 hat C weiterhin neue Funktionen hinzugefügt, um seine Wettbewerbsfähigkeit aufrechtzuerhalten.

Die zukünftigen Entwicklungstrends von C und XML sind: 1) C werden neue Funktionen wie Module, Konzepte und Coroutinen in den Standards C 20 und C 23 einführen, um die Programmierungseffizienz und -sicherheit zu verbessern. 2) XML nimmt weiterhin eine wichtige Position in den Datenaustausch- und Konfigurationsdateien ein, steht jedoch vor den Herausforderungen von JSON und YAML und entwickelt sich in einer prägnanteren und einfacheren Analyse wie die Verbesserungen von XMLSchema1.1 und XPATH3.1.

Das moderne C -Designmodell verwendet neue Funktionen von C 11 und darüber hinaus, um flexiblere und effizientere Software aufzubauen. 1) Verwenden Sie Lambda -Ausdrücke und STD :: Funktion, um das Beobachtermuster zu vereinfachen. 2) Die Leistung durch mobile Semantik und perfekte Weiterleitung optimieren. 3) Intelligente Zeiger gewährleisten die Sicherheit und das Management von Ressourcen.

C Die Kernkonzepte von Multithreading und gleichzeitiger Programmierung umfassen Thread -Erstellung und -management, Synchronisation und gegenseitige Ausschluss, bedingte Variablen, Thread -Pooling, asynchrones Programmieren, gemeinsame Fehler und Debugging -Techniken sowie Leistungsoptimierung sowie Best Practices. 1) Erstellen Sie Threads mit der STD :: Thread -Klasse. Das Beispiel zeigt, wie der Thread erstellt und wartet. 2) Synchronisieren und gegenseitige Ausschluss, um std :: mutex und std :: lock_guard zu verwenden, um gemeinsam genutzte Ressourcen zu schützen und den Datenwettbewerb zu vermeiden. 3) Zustandsvariablen realisieren Kommunikation und Synchronisation zwischen Threads über std :: Condition_Variable. 4) Das Beispiel des Thread -Pools zeigt, wie die Threadpool -Klasse verwendet wird, um Aufgaben parallel zu verarbeiten, um die Effizienz zu verbessern. 5) Asynchrones Programmieren verwendet std :: als


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

Dreamweaver CS6
Visuelle Webentwicklungstools

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software