suchen
HeimBackend-EntwicklungPython-TutorialWas ist die effizienteste Möglichkeit, Funktionen über ein NumPy-Array abzubilden?

What's the Most Efficient Way to Map Functions Over a NumPy Array?

Effiziente Numpy-Array-Zuordnungsstrategien

Wenn es um die Zuordnung von Funktionen über ein Numpy-Array geht, ist Leistungseffizienz entscheidend. Es stellt sich eine grundlegende Frage: „Was ist der effizienteste Ansatz für Zuordnungsvorgänge?“

Ineffizienter Ansatz: Python-Listenverständnis

Das in der Frage bereitgestellte Beispiel verwendet eine Liste Verständnis:

squares = np.array([squarer(xi) for xi in x])

Obwohl dieser Ansatz funktioniert, weist er aufgrund der Zwischenkonvertierung von einer Python-Liste zurück in eine inhärente Ineffizienz auf Numpy-Array.

Optimierte Strategien

Durch das Testen verschiedener Methoden entstehen die optimalen Lösungen:

1. Verwenden Sie integrierte Numpy-Funktionen:

Wenn die Funktion, die Sie zuordnen, bereits in Numpy vektorisiert ist (z. B. x^2), bietet die direkte Verwendung eine bessere Leistung:

squares = x ** 2

2. Vektorisierung mit numpy.vectorize:

Bei benutzerdefinierten Funktionen zeigt die Vektorisierung mit numpy.vectorize erhebliche Geschwindigkeitsgewinne:

f = lambda x: x ** 2
vf = np.vectorize(f)
squares = vf(x)

3. numpy.fromiter:

Dieser Ansatz erstellt einen Iterator aus der Funktion und verwendet numpy.fromiter, um effizient ein Numpy-Array zu erstellen:

squares = np.fromiter((squarer(xi) for xi in x), x.dtype)

4. numpy.array(list(map(...)):

Eine weitere optimierte Alternative ist die Verwendung von Map und die anschließende Konvertierung in ein Numpy-Array:

squares = np.array(list(map(squarer, x)))

Durchgeführte Benchmarks Die Verwendung von Perfplot zeigt, dass diese optimierten Methoden den ursprünglichen Ansatz zum Listenverständnis deutlich übertreffen.

Das obige ist der detaillierte Inhalt vonWas ist die effizienteste Möglichkeit, Funktionen über ein NumPy-Array abzubilden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Was sind einige häufige Gründe, warum ein Python -Skript möglicherweise nicht auf Unix ausgeführt wird?Was sind einige häufige Gründe, warum ein Python -Skript möglicherweise nicht auf Unix ausgeführt wird?Apr 28, 2025 am 12:18 AM

Die Gründe, warum Python -Skripte auf UNIX -Systemen nicht ausgeführt werden können, sind: 1) unzureichende Berechtigungen unter Verwendung von chmod xyour_script.py zur Erteilung von Ausführungsberechtigungen; 2) Falsche oder fehlende Shebang -Linie, Sie sollten #!/Usr/bin/envpython verwenden; 3) In falsche Einstellungen für die Umgebungsvariablen können Sie os.Environ -Debugging drucken. 4) Mit der falschen Python -Version können Sie die Version in der Shebang -Zeile oder der Befehlszeile angeben. 5) Abhängigkeitsprobleme unter Verwendung der virtuellen Umgebung, um Abhängigkeiten zu isolieren; 6) Syntaxfehler, verwenden Sie Python-Mpy_CompileYour_Script.py, um zu erkennen.

Geben Sie ein Beispiel für ein Szenario an, in dem die Verwendung eines Python -Arrays angemessener wäre als die Verwendung einer Liste.Geben Sie ein Beispiel für ein Szenario an, in dem die Verwendung eines Python -Arrays angemessener wäre als die Verwendung einer Liste.Apr 28, 2025 am 12:15 AM

Die Verwendung von Python -Arrays eignet sich besser für die Verarbeitung großer Mengen von numerischen Daten als für Listen. 1) Arrays speichern mehr Speicher, 2) Arrays sind schneller nach numerischen Werten, 3) Konsistenz vom Arrays Kraftstyp, 4) Arrays sind mit C -Arrays kompatibel, sind jedoch nicht so flexibel und bequem wie Listen.

Was sind die Auswirkungen der Leistung bei der Verwendung von Listen im Vergleich zu Arrays in Python?Was sind die Auswirkungen der Leistung bei der Verwendung von Listen im Vergleich zu Arrays in Python?Apr 28, 2025 am 12:10 AM

Listen besser voreflexibilität undmixdatatatypen, während Datensätze der überlegenen sumerischen Berechnungen sandlastete

Wie handelt es sich bei Numpy um die Speicherverwaltung für große Arrays?Wie handelt es sich bei Numpy um die Speicherverwaltung für große Arrays?Apr 28, 2025 am 12:07 AM

NumpymanageMemoryforlargearrayseffictionlyusingViews, Kopien und Memory-Made.1) ViewsAllowsLicing Mit Outcopying, direktModifizierende Theoriginalarray.2) CopieScanbecreated withthecopy () methodeChoperingdata.3) Memory-Maddscanbeed-medellessive-made-mapedFileshandleshandLessive-massessive-massessiva

Was erfordert das Importieren eines Moduls: Listen oder Arrays?Was erfordert das Importieren eines Moduls: Listen oder Arrays?Apr 28, 2025 am 12:06 AM

ListsinpythondonotRequireMportingamodule, whilearRays aus der FROMTHEARRAYMODULEDONEDANIMIMPORT.1) listet zur Verfügung gestellt.

Welche Datentypen können in einem Python -Array gespeichert werden?Welche Datentypen können in einem Python -Array gespeichert werden?Apr 27, 2025 am 12:11 AM

PythonlistscanstoreanyDatatype, ArrayModulearraysStoreOnetype und NumpyarraysarefornumericalComputations.1) listet dieArversatile-memory-effizient.2) Arraymodulenarraysalememory-effizientforhomogeneData.3) Numpharraysareoptional-EffictionhomogenInData.3) nummodulenarraysoptionalinformanceIntata.3) nummodulearraysoptionalinformanceIntata.3) NumpharraysareoPresopplowancalinScesDataa.3) NumpharraysoePerformance

Was passiert, wenn Sie versuchen, einen Wert des falschen Datentyps in einem Python -Array zu speichern?Was passiert, wenn Sie versuchen, einen Wert des falschen Datentyps in einem Python -Array zu speichern?Apr 27, 2025 am 12:10 AM

Wenn SietostoreavalueOfThewrongdatatypeinapythonarray, touencounteratypeerror.Thissisdustuetothearraymodules -SstrictTypeNeen -Forcortion, welche

Welches ist Teil der Python Standard Library: Listen oder Arrays?Welches ist Teil der Python Standard Library: Listen oder Arrays?Apr 27, 2025 am 12:03 AM

PythonlistsarePartThestandardlibrary, whilearraysarenot.listarebuilt-in, vielseitig und UNDUSEDFORSPORINGECollections, während dieArrayRay-thearrayModulei und loses und loses und losesaluseduetolimitedFunctionality.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor