


Ungewöhnliche Zeilen in Pandas-Datenrahmen identifizieren
Bei der Arbeit mit mehreren Datenrahmen ist es notwendig, Zeilen zu identifizieren, die in einem, aber nicht im anderen vorhanden sind. Angenommen, wir haben zwei Datenrahmen, df1 und df2, wobei df2 eine Teilmenge von df1 ist.
Wie können wir die Zeilen aus df1 extrahieren, die in df2 nicht vorhanden sind?
Betrachten Sie das folgende Beispiel:
import pandas as pd df1 = pd.DataFrame(data={'col1': [1, 2, 3, 4, 5, 3], 'col2': [10, 11, 12, 13, 14, 10]}) df2 = pd.DataFrame(data={'col1': [1, 2, 3], 'col2': [10, 11, 12]}) print("df1:") print(df1) print("\ndf2:") print(df2)
Ausgabe:
col1 col2 0 1 10 1 2 11 2 3 12 3 4 13 4 5 14 5 3 10 col1 col2 0 1 10 1 2 11 2 3 12
Unser Ziel ist es, die Zeilen in df1 zu finden, die in nicht vorhanden sind df2.
Lösung:
Um die ungewöhnlichen Zeilen genau zu identifizieren, müssen wir eine Linksverknüpfung zwischen df1 und df2 für die Spalten col1 und col2 durchführen, um sicherzustellen, dass Duplikate entstehen in df2 werden eliminiert. Zusätzlich geben wir Indicator=True an, um eine zusätzliche Spalte zu erstellen, die die Quelle jeder zusammengeführten Zeile angibt.
Der resultierende Datenrahmen, df_all, enthält alle Zeilen von df1 und df2 mit einer zusätzlichen Spalte _merge, die angibt, ob a Zeile stammt aus beiden Datenrahmen (both), nur df1 (left_only) oder nur df2 (right_only).
df_all = df1.merge(df2.drop_duplicates(), on=['col1', 'col2'], how='left', indicator=True)
Wir können jetzt Filtern Sie df_all, um die ungewöhnlichen Zeilen aus df1 mithilfe der booleschen Bedingung df_all['_merge'] == 'left_only' zu extrahieren.
df_uncommon = df_all[df_all['_merge'] == 'left_only'] print("\nUncommon rows in df1:") print(df_uncommon)
Dies gibt die gewünschte Ausgabe zurück:
col1 col2 _merge 3 4 13 left_only 4 5 14 left_only 5 3 10 left_only
Durch die Nutzung des linken Joins mit Duplikateliminierung und der Spalte „_merge“ können wir die Zeilen aus df1, die in nicht vorhanden sind, effektiv identifizieren und extrahieren df2.
Das obige ist der detaillierte Inhalt vonWie identifiziere ich Zeilen, die in einem Pandas-DataFrame vorhanden sind, in einem anderen jedoch nicht?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

PythonarraysSupportvariousoperationen: 1) SlicicingExtractsSubsets, 2) Anhang/Erweiterungen, 3) Einfügen von PlaceSelementsatspezifischePositionen, 4) Entfernen von Delettel, 5) Sortieren/ReversingChangesorder und 6) compredewlistenwlists basierte basierte, basierte Zonexistin

NumpyarraysaresessentialForApplicationsRequeeFoughnumericalComputations und Datamanipulation

UseanArray.ArrayoveralistinpythonwhendealingwithhomogenousData, Performance-CriticalCode, OrInterfacingwithCcode.1) HomogenousData: ArraysSavemoryWithtypedElements.2) Performance-CriticalCode: ArraySaveMoryWithtypedElements.2) Performance-CriticalCode: ArraysFerbetterPerPterPerProrMtorChorescomeChormericalcoricalomancomeChormericalicalomentorMentumscritorcorements.3) Interf

Nein, NOTALLLISTOPERATIONSARESURDEDBYARAYS UNDVICEVERSA.1) ArraysDonotsupportdynamicoperationslikeAppendorinStResizing, die impactSperformance.2) listsDonotguaranteConstantTimeComplexityfordirectAccesslikearraysDo.

ToaccesselementSinapythonlist, verwenden Indexing, Negativindexing, Slicing, Oriteration.1) IndexingStartsat0.2) NegativeIndexingAccessses aus der THEend.3) SlicingExtractSporions.4) itererationSforloopsorenumerate.AlwaySChEckLegthtoavoidIndexerror.

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools
