


Der Retrieval-Augmented Generation (RAG)-Workflow ist ein fortschrittlicher Ansatz in der Verarbeitung natürlicher Sprache (NLP), der Retrieval- und Generierungsfunktionen kombiniert. Dies ist besonders nützlich für Aufgaben, bei denen das Modell Antworten sowohl auf der Grundlage seiner Trainingsdaten als auch externer Wissensquellen generieren muss. In diesem Artikel wird erläutert, wie RAG funktioniert, welche Anwendungsfälle es gibt und wie man es in Python implementiert.
Was ist Retrieval-Augmented Generation (RAG)?
RAG ist ein hybrider Ansatz, der zwei Komponenten vereint:
- Retriever: Ruft relevante Dokumente oder Informationen aus einer externen Wissensdatenbank ab.
- Generator: Erzeugt kohärente und kontextrelevante Antworten basierend auf den abgerufenen Dokumenten.
Durch die Kombination dieser Komponenten ermöglichen RAG-Workflows Modellen, im Vergleich zu eigenständigen generativen Modellen genauere, kontextbewusstere und aktuellere Ausgaben zu generieren.
So funktioniert der RAG-Workflow
- Eingabeabfrage: Der Benutzer stellt eine Abfrage, z. B. eine Frage oder eine Eingabeaufforderung.
- Dokumentenabruf: Der Retriever sucht nach relevanten Dokumenten in einer externen Datenbank, wie etwa Elasticsearch, einer Vektordatenbank oder sogar einem einfachen Textkorpus.
- Kontextuelle Einbettung: Abgerufene Dokumente werden zusammen mit der ursprünglichen Abfrage an den Generator übergeben, um zusätzlichen Kontext bereitzustellen.
- Antwortgenerierung: Der Generator verwendet die Abfrage und die abgerufenen Dokumente, um eine endgültige Antwort zu erstellen.
Wichtige Anwendungsfälle von RAG
- Fragenbeantwortung: Bereitstellung präziser Antworten unter Verwendung interner und externer Wissensdatenbanken.
- Chatbots: Verbesserung von Konversations-KI-Systemen mit aktuellem oder domänenspezifischem Wissen.
- Kundensupport: Lösen von Fragen durch Abrufen und Generieren von Antworten aus einem großen Korpus von FAQs oder Handbüchern.
- Rechercheunterstützung:Zusammenfassen und Beantworten von Fragen basierend auf wissenschaftlichen Arbeiten oder anderen Forschungsmaterialien.
RAG in Python implementieren
Hier ist eine Schritt-für-Schritt-Implementierung eines grundlegenden RAG-Workflows mit Python:
- Notwendige Bibliotheken installieren:
pip install transformers langchain faiss-cpu sentence-transformers
- Retriever einrichten: Nutzen Sie für eine effiziente Recherche eine Vektordatenbank wie FAISS.
from sentence_transformers import SentenceTransformer import faiss # Initialize embedding model model = SentenceTransformer('all-MiniLM-L6-v2') # Example documents documents = [ "Python is a versatile programming language.", "Transformers are powerful models for NLP tasks.", "FAISS is used for vector similarity search." ] # Generate embeddings doc_embeddings = model.encode(documents) # Create FAISS index dimension = doc_embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(doc_embeddings)
- Generator definieren: Verwenden Sie ein vorab trainiertes Sprachmodell von Hugging Face.
from transformers import pipeline # Initialize text generation pipeline generator = pipeline('text-generation', model='gpt2')
- Retriever und Generator integrieren: Kombinieren Sie Retriever und Generator zum RAG-Workflow.
def rag_pipeline(query): # Retrieve similar documents query_embedding = model.encode([query]) distances, indices = index.search(query_embedding, k=2) retrieved_docs = [documents[i] for i in indices[0]] # Generate response using retrieved documents context = "\n".join(retrieved_docs) prompt = f"Context: {context}\nQuery: {query}\nAnswer:" response = generator(prompt, max_length=50, num_return_sequences=1) return response[0]['generated_text'] # Example query query = "What is FAISS?" print(rag_pipeline(query))
- Testen Sie den Workflow: Führen Sie das Skript aus und stellen Sie verschiedene Abfragen bereit, um die Leistung des Systems zu testen.
Vorteile des RAG-Workflows
- Verbesserte Genauigkeit:Nutzt externes Wissen, um kontextbezogene genaue Antworten zu generieren.
- Flexibilität: Passt sich durch Änderung der Wissensdatenbank an verschiedene Domänen an.
- Skalierbarkeit: Funktioniert effizient mit großen Datensätzen unter Verwendung skalierbarer Abrufmechanismen wie FAISS.
Abschluss
Der Retrieval-Augmented Generation (RAG)-Workflow stellt einen bedeutenden Fortschritt im NLP dar, indem er Retrieval und Generierung integriert. Es ist äußerst vielseitig und findet in Bereichen von der Kundenbetreuung bis zur Forschung Anwendung. Durch die oben gezeigte Implementierung von RAG in Python können Sie leistungsstarke, kontextbewusste KI-Systeme erstellen, die auf Ihre spezifischen Anforderungen zugeschnitten sind.
Experimentieren Sie gerne mit verschiedenen Abrufsystemen oder optimieren Sie den Generator, um ihn besser an Ihre Anwendungen anzupassen. Die Möglichkeiten mit RAG-Workflows sind riesig!
Das obige ist der detaillierte Inhalt vonRAG-Workflow verstehen: Retrieval-Augmented Generation in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ArraysArebetterForElement-wiseoperationsduetofAcalAccessandoptimizedImplementationen.1) ArrayShaveContuituousMeMoryfordirectAccess, EnhancingPerformance.2) LISTSAREFLEFLEFELTIBLEISEMEMORTUMEMORTUREDIRECTELACESS.

Mathematische Operationen des gesamten Arrays in Numpy können durch vektorisierte Operationen effizient implementiert werden. 1) Verwenden Sie einfache Operatoren wie Addition (arr 2), um Operationen in Arrays durchzuführen. 2) Numpy verwendet die zugrunde liegende C -Sprachbibliothek, die die Rechengeschwindigkeit verbessert. 3) Sie können komplexe Operationen wie Multiplikation, Abteilung und Exponenten ausführen. 4) Achten Sie auf Rundfunkoperationen, um sicherzustellen, dass die Array -Form kompatibel ist. 5) Die Verwendung von Numpy -Funktionen wie NP.SUM () kann die Leistung erheblich verbessern.

In Python gibt es zwei Hauptmethoden zum Einfügen von Elementen in eine Liste: 1) Mit der Methode Insert (Index, Wert) können Sie Elemente in den angegebenen Index einfügen, das Einfügen jedoch zu Beginn einer großen Liste ineffizient einfügen. 2) Fügen Sie mit der Methode des Appends (Wert) Elemente am Ende der Liste hinzu, was hocheffizient ist. Für große Listen wird empfohlen, append () zu verwenden oder die Verwendung von Deque- oder Numpy -Arrays zu verwenden, um die Leistung zu optimieren.

TomakeapythonscriptexecleableonbothunixandWindows: 1) addashebangline (#!/Usr/bin/envpython3) Andusechmod xtomakePexexable.2.2) onwindows, sicherstellen

Bei der Begegnung mit einem "commandNotFound" -Fehler sollten die folgenden Punkte überprüft werden: 1. Bestätigen Sie, dass das Skript existiert und der Pfad korrekt ist; 2. Überprüfen Sie die Dateiberechtigungen und verwenden Sie CHMOD, um die Ausführungsberechtigungen gegebenenfalls hinzuzufügen. 3. Stellen Sie sicher, dass der Skript -Interpreter installiert und auf dem Weg ist. 4. Überprüfen Sie, ob die Shebang -Linie am Anfang des Skripts korrekt ist. Dies kann das Problem des Skriptbetriebs effektiv lösen und sicherstellen, dass der Codierungsprozess reibungslos ist.

ARRAYSAREGENERARYMOREMORY-effizientesThanlistsforstoringNumericalDataduetototototheirfixed-SizenReanddirectMemoryAccess.1) ArraysStoreElementsInacontuTouNDdirectMemoryAccess.

ToconvertapythonListtoanArray, UsethearrayModule: 1) ImportThearrayModule, 2) Kreatelist, 3) Usearray (Typcode, Liste) Toconvertit, spezifizieren thetypecodelik'i'i'i'i'i'i'i'i'Itingers.ThiskonversionoptimizesMorySageForHomoGeenousData, EnhancingIntationSerance -Formance -FormanceConconcompomp

Python -Listen können verschiedene Arten von Daten speichern. Die Beispielliste enthält Ganzzahlen, Saiten, schwimmende Punktzahlen, Boolesche, verschachtelte Listen und Wörterbücher. Die Listenflexibilität ist bei der Datenverarbeitung und -prototypung wertvoll, muss jedoch mit Vorsicht verwendet werden, um die Lesbarkeit und Wartbarkeit des Codes sicherzustellen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver Mac
Visuelle Webentwicklungstools

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.
