


Identifizieren und Isolieren von Duplikaten in einer Liste
In vielen Programmierszenarien ist es notwendig, doppelte Elemente in einer Liste zu identifizieren und zu verarbeiten. In diesem Artikel werden verschiedene Ansätze zum Isolieren von Duplikaten in einer Liste und zum Erstellen einer neuen Liste untersucht, die nur diese doppelten Werte enthält.
Um die Duplikate in einer Liste zu finden, kann man das in Python integrierte Wörterbuch nutzen oder Daten festlegen Strukturen. Ein Ansatz besteht darin, Counter zu verwenden, eine integrierte Klasse aus dem Collections-Modul. Mithilfe von Counter können Sie das Vorkommen jedes Elements in der Liste zählen. Die Schlüssel mit einer Anzahl größer als 1 stellen Duplikate dar.
Um eine Liste von Duplikaten zu erstellen, können Sie die Ausgabe von Counter weiterverarbeiten. Der in der Antwort bereitgestellte Code veranschaulicht diesen Ansatz. Es ist jedoch wichtig zu beachten, dass Counter nicht als die effizienteste Methode gilt.
Für eine effizientere Lösung kann man ein Set verwenden, das eine Sammlung einzigartiger Elemente ist. Durch Durchlaufen der Liste können Sie überprüfen, ob jedes Element bereits in der Menge vorhanden ist. Wenn dies der Fall ist, handelt es sich bei dem Element um ein Duplikat und kann Ihrer Duplikatliste hinzugefügt werden.
Für Listen, die nicht hashbare Elemente enthalten, können Sie keine Mengen oder Wörterbücher verwenden. In solchen Fällen müssen Sie auf eine quadratische Zeitlösung zurückgreifen, die jedes Element mit allen vorherigen Elementen vergleicht.
Die bereitgestellten Codebeispiele veranschaulichen die Implementierung dieser verschiedenen Ansätze zum Suchen und Isolieren von Duplikaten in einer Liste. Indem Sie die geeignete Methode basierend auf den spezifischen Anforderungen und Merkmalen Ihrer Liste auswählen, können Sie doppelte Werte in Ihren Python-Programmen effektiv verarbeiten.
Das obige ist der detaillierte Inhalt vonWie kann ich doppelte Elemente effizient aus einer Python-Liste identifizieren und extrahieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6
Visuelle Webentwicklungstools

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung