suchen
HeimBackend-EntwicklungPython-TutorialListenverständnis vs. Generatorausdrücke: Wann sollten Sie in Python Klammern anstelle von Klammern verwenden?

List Comprehensions vs. Generator Expressions: When Should You Use Parentheses Instead of Brackets in Python?

Listenverständnisse ohne []: Generatorausdrücke in Python verstehen

In Python sind Listenverständnisse ein leistungsstarkes Werkzeug zum Erstellen von Listen. Allerdings führt die Python-Sprache auch eine weitere ähnliche Funktion ein, die als Generatorausdrücke bekannt ist.

Generatorausdrücke unterscheiden sich von Listenverständnissen dadurch, dass sie keine eckigen Klammern ([]) verwenden. Stattdessen verwenden sie Klammern (), wodurch die Werte einzeln ausgegeben werden. Diese Eigenschaft macht sie speichereffizienter als Listenverständnisse, da sie Werte im laufenden Betrieb generieren, ohne eine vollständige Liste im Speicher zu erstellen.

Im bereitgestellten Beispiel ist str(_) für _ in xrange(10). Ein Generatorausdruck, der eine Folge von Zeichenfolgen erzeugt, die Zahlen von 0 bis 9 darstellen. Die Übergabe dieses Generatorausdrucks an Join hat den gleichen Effekt wie die Verwendung eines Listenverständnisses, jedoch ist kein Quadrat erforderlich Klammern.

Es ist jedoch wichtig zu beachten, dass nicht alle Funktionen Generatorausdrücke akzeptieren können. Funktionen, die eine vollständige Liste erfordern, wie etwa sort oder len, benötigen eine explizite Liste.

Speichereffizienz und -leistung

Im Allgemeinen sind Generatorausdrücke speicherintensiver. effizienter als Listenverständnis. Im Fall von Join ist die Verwendung eines Listenverständnisses jedoch sowohl schneller als auch speichereffizienter. Dies liegt daran, dass Join zwei Durchgänge über die Daten durchführen muss und eine echte Liste es ermöglicht, sofort mit der Arbeit zu beginnen.

Der Leistungsvorteil von Listenverständnissen gegenüber Generatorausdrücken in diesem Fall wird durch das folgende Python-Timeit veranschaulicht Benchmarks:

>>> timeit ''.join(str(n) for n in xrange(1000))
1000 loops, best of 3: 335 usec per loop

>>> timeit ''.join([str(n) for n in xrange(1000)])
1000 loops, best of 3: 288 usec per loop

Obwohl Generatorausdrücke in vielen Fällen Vorteile bei der Speichereffizienz bieten, ist es wichtig, bei der Auswahl die spezifischen Leistungsmerkmale der verwendeten Funktion zu berücksichtigen zwischen Listenverständnissen und Generatorausdrücken.

Das obige ist der detaillierte Inhalt vonListenverständnis vs. Generatorausdrücke: Wann sollten Sie in Python Klammern anstelle von Klammern verwenden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Zusammenführen von Listen in Python: Auswählen der richtigen MethodeZusammenführen von Listen in Python: Auswählen der richtigen MethodeMay 14, 2025 am 12:11 AM

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

Wie verkettet man zwei Listen in Python 3?Wie verkettet man zwei Listen in Python 3?May 14, 2025 am 12:09 AM

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Python Concatenate List SaitenPython Concatenate List SaitenMay 14, 2025 am 12:08 AM

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.

Python -Ausführung, was ist das?Python -Ausführung, was ist das?May 14, 2025 am 12:06 AM

PythonexexecutionStheProcessOfTransformingPythonCodeIntoexexexecleableInstructions.1) ThePythonvirtualmachine (PVM) Ausführungen

Python: Was sind die wichtigsten Merkmale?Python: Was sind die wichtigsten Merkmale?May 14, 2025 am 12:02 AM

Zu den wichtigsten Merkmalen von Python gehören: 1. Die Syntax ist prägnant und leicht zu verstehen, für Anfänger geeignet; 2. Dynamisches Typsystem, Verbesserung der Entwicklungsgeschwindigkeit; 3. Reiche Standardbibliothek, Unterstützung mehrerer Aufgaben; 4. Starke Gemeinschaft und Ökosystem, die umfassende Unterstützung leisten; 5. Interpretation, geeignet für Skript- und Schnellprototypen; 6. Support für Multi-Paradigma, geeignet für verschiedene Programmierstile.

Python: Compiler oder Dolmetscher?Python: Compiler oder Dolmetscher?May 13, 2025 am 12:10 AM

Python ist eine interpretierte Sprache, enthält aber auch den Zusammenstellungsprozess. 1) Python -Code wird zuerst in Bytecode zusammengestellt. 2) Bytecode wird von Python Virtual Machine interpretiert und ausgeführt. 3) Dieser Hybridmechanismus macht Python sowohl flexibel als auch effizient, aber nicht so schnell wie eine vollständig kompilierte Sprache.

Python für Loop vs während der Schleife: Wann zu verwenden, welches?Python für Loop vs während der Schleife: Wann zu verwenden, welches?May 13, 2025 am 12:07 AM

UseaforloopwheniteratoverasequenceOrforaPecificNumberoftimes; UseaWhileloopWencontiningUntilAconDitionisMet.ForloopsardealForknown -Sequencies, während whileloopSuituationen mithungeterminediterationen.

Python Loops: Die häufigsten FehlerPython Loops: Die häufigsten FehlerMay 13, 2025 am 12:07 AM

PythonloopscanleadtoErors-ähnliche Finanzeloops, ModificingListsDuringiteration, Off-by-Oneerrors, Zero-Indexingissues und Nestroxinefficiens.toavoidthese: 1) Verwenden Sie

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Nordhold: Fusionssystem, erklärt
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools