suchen
HeimBackend-EntwicklungPython-TutorialWie füge ich gruppierten Pandas-DataFrames effizient eine sequentielle Zählerspalte hinzu, ohne eine Rückruffunktion zu verwenden?

How to Efficiently Add a Sequential Counter Column to Grouped Pandas DataFrames Without Using a Callback Function?

Hinzufügen einer sequentiellen Zählerspalte zu gruppierten DataFrames ohne Rückruf

Beim Versuch, eine sequentielle Zählerspalte zu Gruppen innerhalb eines DataFrames hinzuzufügen, a Die Rückruffunktion ist möglicherweise nicht der effizienteste Ansatz. Betrachten Sie den folgenden DataFrame:

df = pd.DataFrame(
    columns="index c1 c2 v1".split(),
    data=[
            [0,  "A",  "X",    3, ],
            [1,  "A",  "X",    5, ],
            [2,  "A",  "Y",    7, ],
            [3,  "A",  "Y",    1, ],
            [4,  "B",  "X",    3, ],
            [5,  "B",  "X",    1, ],
            [6,  "B",  "X",    3, ],
            [7,  "B",  "Y",    1, ],
            [8,  "C",  "X",    7, ],
            [9,  "C",  "Y",    4, ],
            [10,  "C",  "Y",    1, ],
            [11,  "C",  "Y",    6, ],]).set_index("index", drop=True)

Das Ziel besteht darin, eine neue Spalte „seq“ zu erstellen, die fortlaufende Nummern für jede Gruppe enthält, was zu der folgenden Ausgabe führt:

   c1 c2  v1  seq
0   A  X   3    1
1   A  X   5    2
2   A  Y   7    1
3   A  Y   1    2
4   B  X   3    1
5   B  X   1    2
6   B  X   3    3
7   B  Y   1    1
8   C  X   7    1
9   C  Y   4    1
10  C  Y   1    2
11  C  Y   6    3

Vermeidung der Rückruffunktion:

Anstatt eine Rückruffunktion zu verwenden, können wir die Methode cumcount() nutzen, um das gleiche Ergebnis häufiger zu erzielen effizient. cumcount() zählt die Anzahl der Vorkommen jedes einzelnen Werts in einer Gruppe und gibt eine Pandas-Serie mit der kumulativen Anzahl zurück.

df["seq"] = df.groupby(['c1', 'c2']).cumcount() + 1

Dieser Ansatz ändert den DataFrame direkt und vermeidet den Overhead einer Callback-Funktion.

Anpassen der Startnummer:

Wenn Sie möchten, dass die Reihenfolge bei 1 statt beginnt 0 können Sie 1 zum Ergebnis hinzufügen:

df["seq"] = df.groupby(['c1', 'c2']).cumcount() + 1

Durch die Verwendung der cumcount()-Methode vereinfachen wir den Prozess des Hinzufügens einer sequentiellen Zählerspalte zu gruppierten Datenrahmen und verbessern so sowohl die Lesbarkeit als auch die Leistung.

Das obige ist der detaillierte Inhalt vonWie füge ich gruppierten Pandas-DataFrames effizient eine sequentielle Zählerspalte hinzu, ohne eine Rückruffunktion zu verwenden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python: Compiler oder Dolmetscher?Python: Compiler oder Dolmetscher?May 13, 2025 am 12:10 AM

Python ist eine interpretierte Sprache, enthält aber auch den Zusammenstellungsprozess. 1) Python -Code wird zuerst in Bytecode zusammengestellt. 2) Bytecode wird von Python Virtual Machine interpretiert und ausgeführt. 3) Dieser Hybridmechanismus macht Python sowohl flexibel als auch effizient, aber nicht so schnell wie eine vollständig kompilierte Sprache.

Python für Loop vs während der Schleife: Wann zu verwenden, welches?Python für Loop vs während der Schleife: Wann zu verwenden, welches?May 13, 2025 am 12:07 AM

UseaforloopwheniteratoverasequenceOrforaPecificNumberoftimes; UseaWhileloopWencontiningUntilAconDitionisMet.ForloopsardealForknown -Sequencies, während whileloopSuituationen mithungeterminediterationen.

Python Loops: Die häufigsten FehlerPython Loops: Die häufigsten FehlerMay 13, 2025 am 12:07 AM

PythonloopscanleadtoErors-ähnliche Finanzeloops, ModificingListsDuringiteration, Off-by-Oneerrors, Zero-Indexingissues und Nestroxinefficiens.toavoidthese: 1) Verwenden Sie

Für Schleife und während der Schleife in Python: Was sind die Vorteile von jedem?Für Schleife und während der Schleife in Python: Was sind die Vorteile von jedem?May 13, 2025 am 12:01 AM

ForloopSareadVantageousForknowniterations und Sequences, OfferingImplicity und Readability;

Python: Ein tiefes Eintauchen in Zusammenstellung und InterpretationPython: Ein tiefes Eintauchen in Zusammenstellung und InterpretationMay 12, 2025 am 12:14 AM

PythonusesahybridmodelofCompilation und Interpretation: 1) thepythonInterPreterCompilessourceCodeIntoplatform-unintenpendentBytecode.2) Thepythonvirtualmachine (PVM) ThenexexexexecthisByTeCode, BalancingeAnsewusewithperformance.

Ist Python eine interpretierte oder eine kompilierte Sprache, und warum ist es wichtig?Ist Python eine interpretierte oder eine kompilierte Sprache, und warum ist es wichtig?May 12, 2025 am 12:09 AM

Pythonisbothinterpreted und kompiliert.1) ItscompiledToByteCodeForPortabilityAcrossplatform.2) thytecodeTheninterpreted, und das ErlaubnisfordyNamictyPingandRapidDevelopment zulässt, obwohl es sich

Für Schleife vs während der Schleife in Python: Schlüsselunterschiede erklärtFür Schleife vs während der Schleife in Python: Schlüsselunterschiede erklärtMay 12, 2025 am 12:08 AM

ForloopsaridealWenyouKnowtHenumberofofiterationssinadvance, während whileloopsarebetterForsituationswhereyouneedtoloopuntilaconditionismet.forloopsaremoreffictionAndable, geeigneter Verfaserungsverlust, whereaswiloopsofofermorcontrolanduseusefulfulf

Für und während Schleifen: ein praktischer LeitfadenFür und während Schleifen: ein praktischer LeitfadenMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Nordhold: Fusionssystem, erklärt
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.