suchen
HeimBackend-EntwicklungPython-TutorialWie kann ich einen großen Datenrahmen effizient in einzelne Datenrahmen nach Teilnehmer-ID aufteilen?

How Can I Efficiently Split a Large DataFrame into Individual DataFrames by Participant ID?

Aufteilen eines riesigen DataFrames in einzelne DataFrames nach Teilnehmer-ID

Stellen Sie sich ein Szenario vor, in dem Sie über einen riesigen DataFrame verfügen, der Daten aus einem Experiment mit 60 Teilnehmern enthält Teilnehmer. Ihr Ziel ist es, diesen umfangreichen DataFrame in 60 verschiedene DataFrames zu unterteilen, die jeweils einen einzelnen Teilnehmer darstellen. Eine wesentliche Variable, „Name“, identifiziert jeden Teilnehmer innerhalb des DataFrame eindeutig.

Ein Versuch, diese Aufgabe mithilfe einer benutzerdefinierten Funktion, „Splitframe“, zu erfüllen, hat sich als erfolglos erwiesen, was die Frage nach einer effizienteren Lösung aufwirft.

Ein überlegener Ansatz: Data Frame Slicing

Eine alternative Strategie beinhaltet die Verwendung von Slicing Techniken zum Trennen des DataFrame. So geht's:

  1. Generieren Sie mithilfe der Spalte „Names“ des DataFrames eine eindeutige Liste von Teilnehmernamen („UniqueNames“).
  2. Erstellen Sie ein Wörterbuch, um die einzelnen DataFrames unterzubringen die Liste „UniqueNames“ als Schlüssel.
  3. Durchlaufen Sie jeden Teilnehmernamen und weisen Sie die entsprechenden Daten einem separaten DataFrame innerhalb zu Wörterbuch.

Dieser Ansatz, der Slicing verwendet, bietet eine einfachere und effizientere Methode zum Erstellen individueller DataFrames für jeden Teilnehmer:

# Create a DataFrame with a 'Names' column
data = pd.DataFrame({
    'Names': ['Joe', 'John', 'Jasper', 'Jez'] * 4,
    'Ob1': np.random.rand(16),
    'Ob2': np.random.rand(16)
})

# Extract unique participant names
UniqueNames = data['Names'].unique()

# Initialize a dictionary to store individual DataFrames
DataFrameDict = {elem: pd.DataFrame() for elem in UniqueNames}

# Populate the dictionary with individual DataFrames
for key in DataFrameDict.keys():
    DataFrameDict[key] = data[data['Names'] == key]

Zugriff auf einzelne DataFrames

Um auf einen bestimmten DataFrame für einen bestimmten Teilnehmer zuzugreifen, verwenden Sie einfach den Wörterbuchschlüssel, der dem Namen des Teilnehmers entspricht, wie gezeigt unten:

DataFrameDict['Joe']

Das obige ist der detaillierte Inhalt vonWie kann ich einen großen Datenrahmen effizient in einzelne Datenrahmen nach Teilnehmer-ID aufteilen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python: Ein tiefes Eintauchen in Zusammenstellung und InterpretationPython: Ein tiefes Eintauchen in Zusammenstellung und InterpretationMay 12, 2025 am 12:14 AM

PythonusesahybridmodelofCompilation und Interpretation: 1) thepythonInterPreterCompilessourceCodeIntoplatform-unintenpendentBytecode.2) Thepythonvirtualmachine (PVM) ThenexexexexecthisByTeCode, BalancingeAnsewusewithperformance.

Ist Python eine interpretierte oder eine kompilierte Sprache, und warum ist es wichtig?Ist Python eine interpretierte oder eine kompilierte Sprache, und warum ist es wichtig?May 12, 2025 am 12:09 AM

Pythonisbothinterpreted und kompiliert.1) ItscompiledToByteCodeForPortabilityAcrossplatform.2) thytecodeTheninterpreted, und das ErlaubnisfordyNamictyPingandRapidDevelopment zulässt, obwohl es sich

Für Schleife vs während der Schleife in Python: Schlüsselunterschiede erklärtFür Schleife vs während der Schleife in Python: Schlüsselunterschiede erklärtMay 12, 2025 am 12:08 AM

ForloopsaridealWenyouKnowtHenumberofofiterationssinadvance, während whileloopsarebetterForsituationswhereyouneedtoloopuntilaconditionismet.forloopsaremoreffictionAndable, geeigneter Verfaserungsverlust, whereaswiloopsofofermorcontrolanduseusefulfulf

Für und während Schleifen: ein praktischer LeitfadenFür und während Schleifen: ein praktischer LeitfadenMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

Python: Ist es wirklich interpretiert? Die Mythen entlarvenPython: Ist es wirklich interpretiert? Die Mythen entlarvenMay 12, 2025 am 12:05 AM

Pythonisnotpurelyinterpretiert; itusesahybridapproachofByteCodecompilation undruntimeinterpretation.1) PythoncompilessourcecodeIntoBytecode, die ISthenexecutBythepythonvirtualmachine (Pvm)

Python -Verkettungslisten mit demselben ElementPython -Verkettungslisten mit demselben ElementMay 11, 2025 am 12:08 AM

ToconcatenatelistsinpythonWithThesameElements, Verwendung: 1) Die Operatortokeepduplikate, 2) asettoremoveduplicate, or3) listenConpRectionforControloverDuplikate, EvermethodhasDifferentPerformanceInDormplocate.

Interpretiert gegen kompilierte Sprachen: Pythons PlatzInterpretiert gegen kompilierte Sprachen: Pythons PlatzMay 11, 2025 am 12:07 AM

PythonisaninterpretedLuage, OfferingaseofuseandflexibilitätsbutfacingPerformancelimitationsincriticalApplications.1) InterpretedLanguages ​​LikePythonexecutine-by-Line, ermöglicht, dassmediateFeedbackandrapidPrototyping.2) CompiledLanguagesslikec/C.5.

Für und während der Schleifen: Wann benutzt du jeweils in Python?Für und während der Schleifen: Wann benutzt du jeweils in Python?May 11, 2025 am 12:05 AM

Useforloopswhenthenumberofofiterationssisknowninadvance und wileloopswhenCiterationsDependonacondition.1) Forloopsardealforsequencelistorranges.2) Während

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Nordhold: Fusionssystem, erklärt
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor