Kauf mir einen Kaffee☕
ColorJitter() kann die Helligkeit, den Kontrast, die Sättigung und den Farbton von null oder mehr Bildern ändern, wie unten gezeigt:
*Memos:
- Das erste Argument für die Initialisierung ist Helligkeit(Optional-Default:0-Type:float oder tuple/list(float)):
*Memos:
- Es ist der Helligkeitsbereich [min, max].
- Es muss 0
- Ein einzelner Wert wird in [max(0, 1-Helligkeit), 1 Helligkeit] umgewandelt.
- Ein Tupel oder eine Liste muss 1D mit 2 Elementen sein. *Das 1. Element muss kleiner oder gleich dem 2. Element sein.
- Das 2. Argument für die Initialisierung ist Contrast(Optional-Default:0-Type:float oder tuple/list(float)):
*Memos:
- Es ist der Bereich des Kontrasts [min, max].
- Es muss 0
- Ein einzelner Wert wird in [max(0, 1-Kontrast), 1 Kontrast] konvertiert.
- Ein Tupel oder eine Liste muss 1D mit 2 Elementen sein. *Das 1. Element muss kleiner oder gleich dem 2. Element sein.
- Das dritte Argument für die Initialisierung ist Sättigung (Optional-Default:0-Type:float oder tuple/list(float)):
*Memos:
- Es ist der Bereich der Sättigung [min, max].
- Es muss 0
- Ein einzelner Wert wird in [max(0, 1-Sättigung), 1 Sättigung] umgewandelt.
- Ein Tupel oder eine Liste muss 1D mit 2 Elementen sein. *Das 1. Element muss kleiner oder gleich dem 2. Element sein.
- Das 4. Argument für die Initialisierung ist hue(Optional-Default:0-Type:float oder tuple/list(float)):
*Memos:
- Es ist der Bereich des Farbtons [min, max].
- Es muss -0,5
- Ein einzelner Wert wird in [-hue, hue] konvertiert.
- Ein Tupel oder eine Liste muss 1D mit 2 Elementen sein. *Das 1. Element muss kleiner oder gleich dem 2. Element sein.
- Das 1. Argument ist img(Required-Type:PIL Image oder tensor/tuple/list(int oder float)):
*Memos:
- Es muss 2D oder 3D sein. Für 3D muss das tiefste D ein Element haben.
- Verwenden Sie nicht img=.
- v2 wird empfohlen, entsprechend V1 oder V2 zu verwenden? Welches soll ich verwenden?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
Das obige ist der detaillierte Inhalt vonColorJitter in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

In Artikel wird die Unmöglichkeit des Tupelverständnisses in Python aufgrund von Syntax -Mehrdeutigkeiten erörtert. Alternativen wie die Verwendung von Tuple () mit Generatorausdrücken werden vorgeschlagen, um Tupel effizient zu erstellen (159 Zeichen)

Der Artikel erläutert Module und Pakete in Python, deren Unterschiede und Verwendung. Module sind einzelne Dateien, während Pakete Verzeichnisse mit einer __init__.py -Datei sind, die verwandte Module hierarchisch organisieren.

In Artikel werden Docstrings in Python, deren Nutzung und Vorteile erörtert. Hauptproblem: Bedeutung von DocStrings für die Code -Dokumentation und -zugriffsfunktion.

In Artikel werden Lambda -Funktionen, ihre Unterschiede zu regulären Funktionen und deren Nützlichkeit bei Programmierszenarien erläutert. Nicht alle Sprachen unterstützen sie.

In Artikel wird in Python Break, Fortsetzung und Pass erörtert, wobei ihre Rolle bei der Kontrolle der Ausführung und des Programmablaufs der Schleife erläutert wird.

In dem Artikel werden die "Pass" -Anweisung in Python, einem als Platzhalter verwendeten NULL -Operation, in Codestrukturen wie Funktionen und Klassen erörtert, die zukünftige Implementierung ohne Syntaxfehler ermöglicht.

In Artikel werden die Übergabe von Funktionen als Argumente in Python erläutert und Vorteile wie Modularität und Anwendungsfälle wie Sortier und Dekorateure hervorheben.

Artikel erörtert / und // Betreiber in Python: / for True Division, // für die Bodenabteilung. Hauptproblem ist das Verständnis der Unterschiede und Anwendungsfälle.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor
