suchen
HeimBackend-EntwicklungPython-TutorialWie können wir die Leistung eines A*-Algorithmus optimieren, indem wir die heuristische Funktion und das Prioritätswarteschlangenmanagement verbessern?

How Can We Optimize A* Algorithm Performance by Improving Heuristic Function and Priority Queue Management?

Analyse von Code-Leistungsproblemen

In diesem Code ist die langsame Leistung auf die teure heuristische Berechnung innerhalb der Astar-Funktion zurückzuführen. Berücksichtigen Sie Folgendes, um die Leistung zu verbessern:

Echtzeit-Leistungsüberwachung

Wie in der Analyse gezeigt, können Profilierungstools wie Stack-Sampling Leistungsengpässe schnell identifizieren. Durch die Untersuchung der Stapelspuren können Sie Anweisungen identifizieren, die übermäßig viel Zeit in Anspruch nehmen.

Die heuristische Funktion

Die heuristische Funktion, heuristisch, durchläuft unnötigerweise das gesamte Formationsarray, was zu einem erheblichen Overhead führt. Ein effizienterer Ansatz besteht darin, beim Durchlaufen des Arrays eine laufende Summe von fCamel und bCamel beizubehalten.

def heuristic(formation):
    fCamels, bCamels = 0, 0
    for i in formation:
        if i == fCamel:
            fCamels += 1
        elif i == bCamel:
            bCamels += fCamels * bCamels  # Update to fCamel * bCamel differences
        else:
            pass
    return bCamels

Optimierung des A*-Algorithmus

Innerhalb der Astar-Funktion ist die Openlist eine Prioritätswarteschlange Das sortiert Knoten basierend auf ihren f-Werten. Der openlist.put-Aufruf verursacht unnötigen Overhead, da die f-Werte bereits berechnet und in den Knotenobjekten gespeichert sind.

Ein effizienterer Ansatz besteht darin, den __lt__-Operator für die Knotenklasse zu überschreiben, um die f-Werte direkt zu vergleichen. Dadurch entfällt die Notwendigkeit des f-Parameters in openlist.put.

def __lt__(self, other):
    return self.f <p>Stellen Sie außerdem sicher, dass die offene Liste in aufsteigender Reihenfolge der f-Werte verwaltet wird, wie es der A*-Algorithmus erfordert. Die Standardimplementierung im Queue-Modul garantiert dieses Verhalten nicht.</p>

Das obige ist der detaillierte Inhalt vonWie können wir die Leistung eines A*-Algorithmus optimieren, indem wir die heuristische Funktion und das Prioritätswarteschlangenmanagement verbessern?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?May 03, 2025 am 12:11 AM

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.May 03, 2025 am 12:10 AM

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Wie geben Sie den Datentyp der Elemente in einem Python -Array an?Wie geben Sie den Datentyp der Elemente in einem Python -Array an?May 03, 2025 am 12:06 AM

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

Was ist Numpy und warum ist es wichtig für das numerische Computing in Python?Was ist Numpy und warum ist es wichtig für das numerische Computing in Python?May 03, 2025 am 12:03 AM

NumpyisessentialfornumericalComputingInpythonduetoitsSpeed, GedächtnisEffizienz und kompetentiertemaMatematical-Funktionen.1) ITSFACTBECAUSPERFORMATIONSOPERATIONS.2) NumpyarraysSaremoremory-Effecthonpythonlists.3) iTofferSAgyarraysAremoremory-Effizieren

Diskutieren Sie das Konzept der 'zusammenhängenden Speicherzuweisung' und seine Bedeutung für Arrays.Diskutieren Sie das Konzept der 'zusammenhängenden Speicherzuweisung' und seine Bedeutung für Arrays.May 03, 2025 am 12:01 AM

ContInuuousMemoryAllocationScrucialforAraysBecauseAltoLowsFofficy und Fastelement Access.1) iTenablesconstantTimeAccess, O (1), Duetodirectaddresscalculation.2) itimProvesefficienceByallowing -MultipleTeLementFetchesperCacheline.3) Es wird gestellt

Wie schneiden Sie eine Python -Liste?Wie schneiden Sie eine Python -Liste?May 02, 2025 am 12:14 AM

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Was sind einige gängige Operationen, die an Numpy -Arrays ausgeführt werden können?Was sind einige gängige Operationen, die an Numpy -Arrays ausgeführt werden können?May 02, 2025 am 12:09 AM

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Wie werden Arrays in der Datenanalyse mit Python verwendet?Wie werden Arrays in der Datenanalyse mit Python verwendet?May 02, 2025 am 12:09 AM

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung