


Relative Importe in Python 3: Die mysteriösen Fehler
In Python 3 sind relative Importe eine bequeme Möglichkeit, Module aus demselben heraus zu importieren Verzeichnis. Allerdings tritt häufig ein unerwarteter Fehler auf:
Fehlermeldungen:
- ImportError: versuchter relativer Import ohne bekanntes übergeordnetes Paket
- ModuleNotFoundError: Kein Modul mit dem Namen „mymodule“
- SystemError: Parent module '' nicht geladen, Relativer Import kann nicht durchgeführt werden
Die Grundursache:
Um diese Fehler zu verstehen, müssen wir uns mit dem Modulimportmechanismus von Python befassen. Relative Importe erfordern, dass das importierende Modul in einem Paket enthalten ist. Ein Paket ist ein Verzeichnis, das durch das Vorhandensein einer __init__.py-Datei als Paket gekennzeichnet ist.
Gemeinsames Layout:
Pakete haben häufig die folgende Struktur:
main.py mypackage/ __init__.py mymodule.py myothermodule.py
Beispiel Code:
- mymodule.py
# Exported function def as_int(a): return int(a) # Test function for module def _test(): assert as_int('1') == 1 if __name__ == '__main__': _test()
- myothermodule.py
# Exported function def add(a, b): return as_int(a) + as_int(b) # Test function for module def _test(): assert add('1', '1') == 2 if __name__ == '__main__': _test()
- main.py
from mypackage.myothermodule import add def main(): print(add('1', '1')) if __name__ == '__main__': main()
Wenn Sie main.py ausführen oder mypackage/mymodule.py, alles funktioniert reibungslos. Das Ausführen von mypackage/myothermodule.py schlägt jedoch aufgrund des relativen Imports fehl:
from .mymodule import as_int
Die Lösung:
Wie Guido van Rossum erklärt, liegt dieser Fehler an Python behandelt laufende Skripte innerhalb eines Pakets als Antimuster. Die empfohlene Lösung besteht darin, relative Importe zu vermeiden und stattdessen absolute Importe zu verwenden:
from mypackage.mymodule import as_int
Alternative Ansätze:
Wenn Sie immer noch relative Importe bevorzugen, können Sie Folgendes verwenden: m-Option, um das zu importierende Modul anzugeben, aber es kann ausführlich und unpraktisch sein:
python3 -m mypackage.myothermodule
Eine andere Alternative ist die Manipulation PYTHONPATH, um das übergeordnete Verzeichnis des Pakets einzuschließen:
import sys import os SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(SCRIPT_DIR)) from mypackage.mymodule import as_int
Das obige ist der detaillierte Inhalt vonWarum schlagen relative Importe in Python 3 fehl und wie kann ich sie beheben?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Dreamweaver Mac
Visuelle Webentwicklungstools

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),