


Absolute vs. relative Pfade in Flask Blueprints: Wie referenziere ich Verzeichnisse richtig?
Referenzieren von Verzeichnissen in Flask: Absolute vs. relative Pfade
In Flask-Anwendungen beim Zugriff auf Verzeichnisse aus Ansichten, die sich in Blueprints außerhalb des Stammverzeichnisses befinden Verzeichnis muss der Pfad absolut sein. Dies liegt daran, dass relative Pfade relativ zum aktuellen Arbeitsverzeichnis interpretiert werden, nicht zum Verzeichnis, in dem sich der Code befindet.
Zur Veranschaulichung nehmen wir an, Sie haben eine Flask-App mit der folgenden Struktur:
project/ app/ __init__.py views.py blueprints/ __init__.py blueprint.py data/ nltk_data
In der Ansicht des Blueprints schlägt der folgende Code fehl:
nltk.data.path.append('../nltk_data/')
Der Pfad ist relativ zum Verzeichnis des Blueprints, aber nltk.data erwartet einen absoluten Pfad. Die richtige Art, den Pfad anzugeben, ist die Verwendung der absoluten Form:
nltk.data.path.append('/home/username/myapp/app/nltk_data/')
Alternativ können Sie das root_path-Attribut der App oder des Blueprints verwenden, um einen absoluten Pfad zu erstellen, etwa so:
resource_path = os.path.join(app.root_path, 'nltk_data')
Dies wird empfohlen, da es die Notwendigkeit vermeidet, Pfade fest zu codieren, wodurch Ihr Code portabler wird.
Beachten Sie, dass das Anhängen im Allgemeinen nicht erforderlich ist Das Verzeichnis wird bei jedem Aufruf einer Ansicht in nltk.data verschoben. Normalerweise können Sie den Datenpfad einmalig beim Erstellen der App einrichten. Konkrete Anweisungen dazu finden Sie in der Dokumentation von nltk.
Das obige ist der detaillierte Inhalt vonAbsolute vs. relative Pfade in Flask Blueprints: Wie referenziere ich Verzeichnisse richtig?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

Der Einfluss der Homogenität von Arrays auf die Leistung ist doppelt: 1) Homogenität ermöglicht es dem Compiler, den Speicherzugriff zu optimieren und die Leistung zu verbessern. 2) aber begrenzt die Typ -Vielfalt, was zu Ineffizienz führen kann. Kurz gesagt, die Auswahl der richtigen Datenstruktur ist entscheidend.

TocraftexecutablePythonScripts, folge theseBestPractices: 1) addashebangline (#!/Usr/bin/envpython3) tomakethescriptexcutable.2 SetPermissions withchmod xyour_script.py.3) organisation -bithacleardocstringanduseInname == "__ __": FormAcleardocstringanduseInname

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor
