


In der heutigen Welt sind Geschwindigkeit und Effizienz bei der Beantwortung von Anfragen für große und stark frequentierte Systeme von größter Bedeutung. Online-Plattformen wie E-Commerce-Websites, soziale Netzwerke und Bankdienstleistungen sind mit einem riesigen Datenvolumen und Benutzeranfragen konfrontiert. Diese hohe Nachfrage stellt nicht nur eine erhebliche Belastung für Server und Datenbanken dar, sondern kann auch die Benutzererfahrung erheblich beeinträchtigen. In diesem Zusammenhang kann die Implementierung eines Caching-Systems eine wirksame Lösung sein, um die Leistung zu verbessern und die Ressourcenbelastung zu reduzieren.
In diesem Artikel untersuchen wir die Implementierung eines erweiterten Caching-Systems, das AVL-Bäume und Redis kombiniert. Dieses System umfasst Sicherheitsmechanismen, TTL-Management (Time to Live) und die Integration mit Redis, um Leistung und Flexibilität zu verbessern. Ziel ist es, die Vorteile beider Technologien zu nutzen und gleichzeitig ihre Schwächen zu mildern.
Wichtiger Hinweis: Dieser Artikel wurde mit Hilfe künstlicher Intelligenz entwickelt.
Vor- und Nachteile der Kombination eines baumbasierten AVL-Caching-Systems mit Redis
Vorteile:
-
Verbesserte Gedächtnisleistung:
- Intelligentes TTL-Management: Durch die Verwendung eines AVL-Baums zur Verwaltung des Datenablaufs kann der Speicherverbrauch optimiert und die Aufbewahrung veralteter Daten verhindert werden. Dies ist besonders nützlich in Szenarien, in denen sich Daten schnell ändern und ein präzises Ablaufdatum erforderlich ist.
-
Erhöhte Sicherheit:
- Token-Validierung: Das Hinzufügen eines tokenbasierten Validierungsmechanismus erhöht die Redis-Sicherheit. Diese zusätzliche Sicherheitsschicht verhindert unbefugten Zugriff auf den Cache und erhöht so die Gesamtsystemsicherheit.
-
Erweiterte TTL-Verwaltung:
- Benutzerdefinierte Ablaufrichtlinien: AVL-Bäume ermöglichen die Implementierung komplexerer und maßgeschneiderter Ablaufrichtlinien, die Redis möglicherweise nicht standardmäßig unterstützt.
-
Verschiedene Datenstrukturen:
- Ausgewogene Baumstruktur: Als ausgewogene Datenstruktur können AVL-Bäume im Vergleich zu den Standarddatenstrukturen von Redis eine bessere Leistung für bestimmte Anwendungsfälle bieten, die eine schnelle Suche und Sortierung erfordern.
-
Erhöhte Flexibilität und Anpassung:
- Größere Anpassung: Die Kombination der beiden Systeme ermöglicht eine umfassendere Anpassung und ermöglicht die Entwicklung präziserer und anwendungsspezifischerer Lösungen.
Nachteile:
-
Erhöhte architektonische Komplexität:
- Verwaltung von zwei Caching-Systemen: Die gleichzeitige Verwendung von Redis und einem AVL-Baum-basierten Caching-System erhöht die architektonische Komplexität und erfordert eine koordinierte Verwaltung zwischen den beiden Systemen.
-
Erhöhter Zeitaufwand:
- Zusätzliche Latenz: Das Hinzufügen einer zusätzlichen Caching-Ebene kann zu Verzögerungen führen. Es muss unbedingt sichergestellt werden, dass die Leistungsvorteile diese potenziellen Verzögerungen überwiegen.
-
Datenpflege und Synchronisierung:
- Datenkonsistenz: Die Aufrechterhaltung der Konsistenz und Synchronisierung zwischen Redis und dem AVL-Baum ist entscheidend, um Datendiskrepanzen zu verhindern, die komplexe Synchronisierungsmechanismen erforderlich machen.
-
Höhere Entwicklungs- und Wartungskosten:
- Erhöhte Kosten: Die Entwicklung und Wartung von zwei Caching-Systemen erfordert mehr Ressourcen und vielfältiges Fachwissen, was möglicherweise die Gesamtkosten des Projekts erhöht.
-
Sicherheitskomplexität:
- Sicherheitsrichtlinien koordinieren: Es kann eine Herausforderung sein, sicherzustellen, dass Sicherheitsrichtlinien in beiden Systemen korrekt und konsistent implementiert werden.
Implementierung des Caching-Systems mit AVL Trees und Redis
Im Folgenden stellen wir die professionelle Implementierung dieses Caching-Systems vor. Diese Implementierung umfasst einen AVL-Baum zum Verwalten von Daten mit TTL-Funktionen und Redis für eine schnelle Datenspeicherung.
1. AVL-Baum mit TTL
Zuerst implementieren wir den AVL-Baum mit TTL-Verwaltungsfunktionen.
// src/utils/avltree.ts export class AVLNode { key: string; value: any; ttl: number; // Expiration time in milliseconds height: number; left: AVLNode | null; right: AVLNode | null; constructor(key: string, value: any, ttl: number) { this.key = key; this.value = value; this.ttl = Date.now() + ttl; this.height = 1; this.left = null; this.right = null; } isExpired(): boolean { return Date.now() > this.ttl; } } export class AVLTree { private root: AVLNode | null; constructor() { this.root = null; } private getHeight(node: AVLNode | null): number { return node ? node.height : 0; } private updateHeight(node: AVLNode): void { node.height = 1 + Math.max(this.getHeight(node.left), this.getHeight(node.right)); } private rotateRight(y: AVLNode): AVLNode { const x = y.left!; y.left = x.right; x.right = y; this.updateHeight(y); this.updateHeight(x); return x; } private rotateLeft(x: AVLNode): AVLNode { const y = x.right!; x.right = y.left; y.left = x; this.updateHeight(x); this.updateHeight(y); return y; } private getBalance(node: AVLNode): number { return node ? this.getHeight(node.left) - this.getHeight(node.right) : 0; } insert(key: string, value: any, ttl: number): void { this.root = this.insertNode(this.root, key, value, ttl); } private insertNode(node: AVLNode | null, key: string, value: any, ttl: number): AVLNode { if (!node) return new AVLNode(key, value, ttl); if (key node.key) { node.right = this.insertNode(node.right, key, value, ttl); } else { node.value = value; node.ttl = Date.now() + ttl; return node; } this.updateHeight(node); const balance = this.getBalance(node); // Balancing the tree if (balance > 1 && key node.right!.key) return this.rotateLeft(node); if (balance > 1 && key > node.left!.key) { node.left = this.rotateLeft(node.left!); return this.rotateRight(node); } if (balance node.key) { node.right = this.deleteNode(node.right, key); } else { if (!node.left || !node.right) return node.left || node.right; let minLargerNode = node.right; while (minLargerNode.left) minLargerNode = minLargerNode.left; node.key = minLargerNode.key; node.value = minLargerNode.value; node.ttl = minLargerNode.ttl; node.right = this.deleteNode(node.right, minLargerNode.key); } this.updateHeight(node); const balance = this.getBalance(node); if (balance > 1 && this.getBalance(node.left!) >= 0) return this.rotateRight(node); if (balance 1 && this.getBalance(node.left!) 0) { node.right = this.rotateRight(node.right!); return this.rotateLeft(node); } return node; } }
2. Cache-Dienst (CacheService) mit Redis-Integration
In diesem Abschnitt implementieren wir den Cache-Dienst, der sowohl den AVL-Baum als auch Redis für die Cache-Verwaltung nutzt. Darüber hinaus integrieren wir einen Token-Validierungsmechanismus.
// src/cache/cache.service.ts import { Injectable, UnauthorizedException, InternalServerErrorException } from '@nestjs/common'; import { AVLTree } from '../utils/avltree'; import { InjectRedis, Redis } from '@nestjs-modules/ioredis'; @Injectable() export class CacheService { private avlTree: AVLTree; private authorizedTokens: Set<string> = new Set(['your_authorized_token']); // Authorized tokens constructor(@InjectRedis() private readonly redis: Redis) { this.avlTree = new AVLTree(); } validateToken(token: string): void { if (!this.authorizedTokens.has(token)) { throw new UnauthorizedException('Invalid access token'); } } async set(key: string, value: any, ttl: number, token: string): Promise<void> { this.validateToken(token); try { // Store in Redis await this.redis.set(key, JSON.stringify(value), 'PX', ttl); // Store in AVL Tree this.avlTree.insert(key, value, ttl); } catch (error) { throw new InternalServerErrorException('Failed to set cache'); } } async get(key: string, token: string): Promise<any> { this.validateToken(token); try { // First, attempt to retrieve from Redis const redisValue = await this.redis.get(key); if (redisValue) { return JSON.parse(redisValue); } // If not found in Redis, retrieve from AVL Tree const avlValue = this.avlTree.search(key); if (avlValue) { // Re-store in Redis for faster access next time // Assuming the remaining TTL is maintained in AVL Tree // For simplicity, we set a new TTL const newTtl = 60000; // 60 seconds as an example await this.redis.set(key, JSON.stringify(avlValue), 'PX', newTtl); return avlValue; } return null; } catch (error) { throw new InternalServerErrorException('Failed to get cache'); } } async delete(key: string, token: string): Promise<void> { this.validateToken(token); try { // Remove from Redis await this.redis.del(key); // Remove from AVL Tree this.avlTree.delete(key); } catch (error) { throw new InternalServerErrorException('Failed to delete cache'); } } } </void></any></void></string>
3. API-Controller (CacheController)
Der Controller verwaltet API-Anfragen an den Cache-Dienst.
// src/cache/cache.controller.ts import { Controller, Get, Post, Delete, Body, Param, Query, HttpCode, HttpStatus } from '@nestjs/common'; import { CacheService } from './cache.service'; class SetCacheDto { key: string; value: any; ttl: number; // milliseconds token: string; } @Controller('cache') export class CacheController { constructor(private readonly cacheService: CacheService) {} @Post('set') @HttpCode(HttpStatus.CREATED) async setCache(@Body() body: SetCacheDto) { await this.cacheService.set(body.key, body.value, body.ttl, body.token); return { message: 'Data cached successfully' }; } @Get('get/:key') async getCache(@Param('key') key: string, @Query('token') token: string) { const value = await this.cacheService.get(key, token); return value ? { value } : { message: 'Key not found or expired' }; } @Delete('delete/:key') @HttpCode(HttpStatus.NO_CONTENT) async deleteCache(@Param('key') key: string, @Query('token') token: string) { await this.cacheService.delete(key, token); return { message: 'Key deleted successfully' }; } }
4. Cache-Modul (CacheModule)
Definiert das Cache-Modul, das den Dienst und den Controller verbindet und Redis einfügt.
// src/cache/cache.module.ts import { Module } from '@nestjs/common'; import { CacheService } from './cache.service'; import { CacheController } from './cache.controller'; import { RedisModule } from '@nestjs-modules/ioredis'; @Module({ imports: [ RedisModule.forRoot({ config: { host: 'localhost', port: 6379, // Other Redis configurations }, }), ], providers: [CacheService], controllers: [CacheController], }) export class CacheModule {}
5. Redis-Konfiguration
Um Redis im NestJS-Projekt zu verwenden, verwenden wir das Paket @nestjs-modules/ioredis. Installieren Sie zunächst das Paket:
npm install @nestjs-modules/ioredis ioredis
Konfigurieren Sie dann Redis im CacheModule wie oben gezeigt. Wenn Sie erweiterte Konfigurationen benötigen, können Sie separate Konfigurationsdateien verwenden.
6. Token-Validierungsmechanismus
Für die Verwaltung und Validierung von Token können verschiedene Strategien eingesetzt werden. In dieser einfachen Implementierung werden Token in einem festen Satz verwaltet. Für größere Projekte wird empfohlen, JWT (JSON Web Tokens) oder andere erweiterte Sicherheitsmethoden zu verwenden.
7. Fehlerbehandlung und Eingabevalidierung
In dieser Implementierung werden DTO-Klassen (Data Transfer Object) zur Eingabevalidierung und Fehlerverwaltung verwendet. Darüber hinaus nutzt der Cache-Dienst eine allgemeine Fehlerbehandlung, um unerwartete Probleme zu verhindern.
8. Hauptanwendungsmodul (AppModule)
Schließlich fügen wir das Cache-Modul zum Hauptanwendungsmodul hinzu.
// src/utils/avltree.ts export class AVLNode { key: string; value: any; ttl: number; // Expiration time in milliseconds height: number; left: AVLNode | null; right: AVLNode | null; constructor(key: string, value: any, ttl: number) { this.key = key; this.value = value; this.ttl = Date.now() + ttl; this.height = 1; this.left = null; this.right = null; } isExpired(): boolean { return Date.now() > this.ttl; } } export class AVLTree { private root: AVLNode | null; constructor() { this.root = null; } private getHeight(node: AVLNode | null): number { return node ? node.height : 0; } private updateHeight(node: AVLNode): void { node.height = 1 + Math.max(this.getHeight(node.left), this.getHeight(node.right)); } private rotateRight(y: AVLNode): AVLNode { const x = y.left!; y.left = x.right; x.right = y; this.updateHeight(y); this.updateHeight(x); return x; } private rotateLeft(x: AVLNode): AVLNode { const y = x.right!; x.right = y.left; y.left = x; this.updateHeight(x); this.updateHeight(y); return y; } private getBalance(node: AVLNode): number { return node ? this.getHeight(node.left) - this.getHeight(node.right) : 0; } insert(key: string, value: any, ttl: number): void { this.root = this.insertNode(this.root, key, value, ttl); } private insertNode(node: AVLNode | null, key: string, value: any, ttl: number): AVLNode { if (!node) return new AVLNode(key, value, ttl); if (key node.key) { node.right = this.insertNode(node.right, key, value, ttl); } else { node.value = value; node.ttl = Date.now() + ttl; return node; } this.updateHeight(node); const balance = this.getBalance(node); // Balancing the tree if (balance > 1 && key node.right!.key) return this.rotateLeft(node); if (balance > 1 && key > node.left!.key) { node.left = this.rotateLeft(node.left!); return this.rotateRight(node); } if (balance node.key) { node.right = this.deleteNode(node.right, key); } else { if (!node.left || !node.right) return node.left || node.right; let minLargerNode = node.right; while (minLargerNode.left) minLargerNode = minLargerNode.left; node.key = minLargerNode.key; node.value = minLargerNode.value; node.ttl = minLargerNode.ttl; node.right = this.deleteNode(node.right, minLargerNode.key); } this.updateHeight(node); const balance = this.getBalance(node); if (balance > 1 && this.getBalance(node.left!) >= 0) return this.rotateRight(node); if (balance 1 && this.getBalance(node.left!) 0) { node.right = this.rotateRight(node.right!); return this.rotateLeft(node); } return node; } }
9. Hauptanwendungsdatei (main.ts)
Die Hauptanwendungsdatei, die NestJS bootet.
// src/cache/cache.service.ts import { Injectable, UnauthorizedException, InternalServerErrorException } from '@nestjs/common'; import { AVLTree } from '../utils/avltree'; import { InjectRedis, Redis } from '@nestjs-modules/ioredis'; @Injectable() export class CacheService { private avlTree: AVLTree; private authorizedTokens: Set<string> = new Set(['your_authorized_token']); // Authorized tokens constructor(@InjectRedis() private readonly redis: Redis) { this.avlTree = new AVLTree(); } validateToken(token: string): void { if (!this.authorizedTokens.has(token)) { throw new UnauthorizedException('Invalid access token'); } } async set(key: string, value: any, ttl: number, token: string): Promise<void> { this.validateToken(token); try { // Store in Redis await this.redis.set(key, JSON.stringify(value), 'PX', ttl); // Store in AVL Tree this.avlTree.insert(key, value, ttl); } catch (error) { throw new InternalServerErrorException('Failed to set cache'); } } async get(key: string, token: string): Promise<any> { this.validateToken(token); try { // First, attempt to retrieve from Redis const redisValue = await this.redis.get(key); if (redisValue) { return JSON.parse(redisValue); } // If not found in Redis, retrieve from AVL Tree const avlValue = this.avlTree.search(key); if (avlValue) { // Re-store in Redis for faster access next time // Assuming the remaining TTL is maintained in AVL Tree // For simplicity, we set a new TTL const newTtl = 60000; // 60 seconds as an example await this.redis.set(key, JSON.stringify(avlValue), 'PX', newTtl); return avlValue; } return null; } catch (error) { throw new InternalServerErrorException('Failed to get cache'); } } async delete(key: string, token: string): Promise<void> { this.validateToken(token); try { // Remove from Redis await this.redis.del(key); // Remove from AVL Tree this.avlTree.delete(key); } catch (error) { throw new InternalServerErrorException('Failed to delete cache'); } } } </void></any></void></string>
10. Testen und Ausführen der Anwendung
Nachdem Sie alle Komponenten implementiert haben, können Sie die Anwendung ausführen, um ihre Funktionalität sicherzustellen.
// src/cache/cache.controller.ts import { Controller, Get, Post, Delete, Body, Param, Query, HttpCode, HttpStatus } from '@nestjs/common'; import { CacheService } from './cache.service'; class SetCacheDto { key: string; value: any; ttl: number; // milliseconds token: string; } @Controller('cache') export class CacheController { constructor(private readonly cacheService: CacheService) {} @Post('set') @HttpCode(HttpStatus.CREATED) async setCache(@Body() body: SetCacheDto) { await this.cacheService.set(body.key, body.value, body.ttl, body.token); return { message: 'Data cached successfully' }; } @Get('get/:key') async getCache(@Param('key') key: string, @Query('token') token: string) { const value = await this.cacheService.get(key, token); return value ? { value } : { message: 'Key not found or expired' }; } @Delete('delete/:key') @HttpCode(HttpStatus.NO_CONTENT) async deleteCache(@Param('key') key: string, @Query('token') token: string) { await this.cacheService.delete(key, token); return { message: 'Key deleted successfully' }; } }
11. Musteranfragen
Cache festlegen:
// src/cache/cache.module.ts import { Module } from '@nestjs/common'; import { CacheService } from './cache.service'; import { CacheController } from './cache.controller'; import { RedisModule } from '@nestjs-modules/ioredis'; @Module({ imports: [ RedisModule.forRoot({ config: { host: 'localhost', port: 6379, // Other Redis configurations }, }), ], providers: [CacheService], controllers: [CacheController], }) export class CacheModule {}
Cache abrufen:
npm install @nestjs-modules/ioredis ioredis
Cache löschen:
// src/app.module.ts import { Module } from '@nestjs/common'; import { CacheModule } from './cache/cache.module'; @Module({ imports: [CacheModule], controllers: [], providers: [], }) export class AppModule {}
Geeignete Anwendungsfälle für die Kombination von Redis- und AVL-Baum-basierten Caching-Systemen
-
Bank- und Finanzsysteme:
- Verwaltung sensibler Sitzungen und Transaktionen: Hohe Sicherheit und präzises TTL-Management sind für sensible Finanzdaten unerlässlich. Die Kombination von Token-Sicherheit und intelligentem TTL-Management ist in diesem Bereich äußerst vorteilhaft.
-
Hochfrequentierte E-Commerce-Plattformen:
- Produktdaten speichern und Einkaufswagen verwalten: Die Optimierung des Speichers und die Erhöhung der Datenzugriffsgeschwindigkeit sind entscheidend für die Verbesserung des Benutzererlebnisses in großen Online-Shops wie Amazon.
-
Messaging- und Social-Networking-Anwendungen:
- Speichern von Benutzerstatus in Echtzeit: Um den Online-/Offline-Status und die Nachrichten der Benutzer anzuzeigen, sind ein schneller Zugriff und eine präzise Datenverwaltung erforderlich.
-
Wetter- und Währungsumtauschanwendungen:
- API-Caching zur Reduzierung der Anforderungslast: Speichern von Ergebnissen komplexer Berechnungen und Live-Daten mit präziser Ablaufverwaltung, um Benutzern aktuelle und schnelle Informationen bereitzustellen.
-
Content-Management-Systeme und Medienplattformen:
- Caching von stark frequentierten Seiten und Inhalten:Optimierung des Zugriffs auf häufig angesehene Inhalte und Reduzierung der Serverlast, um ein reibungsloseres Benutzererlebnis zu bieten.
-
Analytische Anwendungen und Echtzeit-Dashboards:
- Sofortige Analyseergebnisse speichern: Bereitstellung schneller und aktueller Analysedaten mithilfe mehrerer Caches zur Verbesserung der Leistung und Ergebnisgenauigkeit.
Abschluss
In diesem Artikel haben wir ein erweitertes Caching-System mithilfe von AVL-Bäumen und Redis innerhalb des NestJS-Frameworks implementiert. Dieses System bietet erweitertes TTL-Management, tokenbasierte Sicherheit und Redis-Integration und bietet eine robuste und flexible Lösung für Anwendungen mit hoher Nachfrage. Die Kombination dieser beiden Technologien nutzt die Stärken beider, behebt die Schwächen von Redis und verbessert die Gesamtcaching-Leistung.
Das obige ist der detaillierte Inhalt vonSteigern Sie Geschwindigkeit und Leistung mit erweitertem Caching in NestJS: Verwendung von AVL-Bäumen und Redis. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python und JavaScript haben jeweils ihre eigenen Vorteile, und die Wahl hängt von den Projektbedürfnissen und persönlichen Vorlieben ab. 1. Python ist leicht zu erlernen, mit prägnanter Syntax, die für Datenwissenschaft und Back-End-Entwicklung geeignet ist, aber eine langsame Ausführungsgeschwindigkeit hat. 2. JavaScript ist überall in der Front-End-Entwicklung und verfügt über starke asynchrone Programmierfunktionen. Node.js macht es für die Entwicklung der Vollstapel geeignet, die Syntax kann jedoch komplex und fehleranfällig sein.

JavaScriptisnotbuiltoncorc; Es ist angehört, dass sich JavaScriptWasdedeSthatrunsonGineoFtencninc.

JavaScript kann für die Entwicklung von Front-End- und Back-End-Entwicklung verwendet werden. Das Front-End verbessert die Benutzererfahrung durch DOM-Operationen, und die Back-End-Serveraufgaben über node.js. 1. Beispiel für Front-End: Ändern Sie den Inhalt des Webseitentextes. 2. Backend Beispiel: Erstellen Sie einen Node.js -Server.

Die Auswahl von Python oder JavaScript sollte auf Karriereentwicklung, Lernkurve und Ökosystem beruhen: 1) Karriereentwicklung: Python ist für die Entwicklung von Datenwissenschaften und Back-End-Entwicklung geeignet, während JavaScript für die Entwicklung von Front-End- und Full-Stack-Entwicklung geeignet ist. 2) Lernkurve: Die Python -Syntax ist prägnant und für Anfänger geeignet; Die JavaScript -Syntax ist flexibel. 3) Ökosystem: Python hat reichhaltige wissenschaftliche Computerbibliotheken und JavaScript hat ein leistungsstarkes Front-End-Framework.

Die Kraft des JavaScript -Frameworks liegt in der Vereinfachung der Entwicklung, der Verbesserung der Benutzererfahrung und der Anwendungsleistung. Betrachten Sie bei der Auswahl eines Frameworks: 1. Projektgröße und Komplexität, 2. Teamerfahrung, 3. Ökosystem und Community -Unterstützung.

Einführung Ich weiß, dass Sie es vielleicht seltsam finden. Was genau muss JavaScript, C und Browser tun? Sie scheinen nicht miteinander verbunden zu sein, aber tatsächlich spielen sie eine sehr wichtige Rolle in der modernen Webentwicklung. Heute werden wir die enge Verbindung zwischen diesen drei diskutieren. In diesem Artikel erfahren Sie, wie JavaScript im Browser ausgeführt wird, die Rolle von C in der Browser -Engine und wie sie zusammenarbeiten, um das Rendern und die Interaktion von Webseiten voranzutreiben. Wir alle kennen die Beziehung zwischen JavaScript und Browser. JavaScript ist die Kernsprache der Front-End-Entwicklung. Es läuft direkt im Browser und macht Webseiten lebhaft und interessant. Haben Sie sich jemals gefragt, warum Javascr

Node.js zeichnet sich bei effizienten E/A aus, vor allem bei Streams. Streams verarbeiten Daten inkrementell und vermeiden Speicherüberladung-ideal für große Dateien, Netzwerkaufgaben und Echtzeitanwendungen. Die Kombination von Streams mit der TypeScript -Sicherheit erzeugt eine POWE

Die Unterschiede in der Leistung und der Effizienz zwischen Python und JavaScript spiegeln sich hauptsächlich in: 1 wider: 1) Als interpretierter Sprache läuft Python langsam, weist jedoch eine hohe Entwicklungseffizienz auf und ist für eine schnelle Prototypentwicklung geeignet. 2) JavaScript ist auf einen einzelnen Thread im Browser beschränkt, aber Multi-Threading- und Asynchronen-E/A können verwendet werden, um die Leistung in Node.js zu verbessern, und beide haben Vorteile in tatsächlichen Projekten.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor
