


Wie kann ich UnicodeDecodeError beim Lesen von CSV-Dateien in Pandas beheben?
UnicodeDecodeError: Beheben von Codierungsproblemen beim Lesen von CSV-Dateien in Pandas
Einführung
Arbeiten mit CSV-Dateien stellen häufig Probleme bei der Kodierung dar, insbesondere wenn sie auf Zeichen stoßen, die von der Standardkodierung nicht unterstützt werden. Pandas, eine beliebte Datenbearbeitungsbibliothek in Python, bietet die Methode read_csv() zum Importieren von Daten aus CSV-Dateien. Allerdings kann diese Methode gelegentlich auf den UnicodeDecodeError stoßen, wenn sie mit Unicode-codierten Zeichen arbeitet.
Fehleranalyse
Die bereitgestellte Fehlermeldung weist darauf hin, dass die Methode read_csv() Probleme hat um ein Byte innerhalb der Datei mit der Standard-UTF-8-Kodierung zu dekodieren. Das ungültige Fortsetzungsbyte deutet darauf hin, dass die Datei möglicherweise mit einer anderen Codierung codiert wurde.
Beheben des Problems
Um diesen Fehler zu beheben, können Sie die Codierung explizit angeben, wenn Lesen der CSV-Datei. Pandas stellt hierfür den Kodierungsparameter bereit. Folgende Ansätze können eingesetzt werden:
-
ISO-8859-1-Kodierung:
Verwenden Sie die ISO-8859-1-Kodierung, die üblicherweise für Western verwendet wird Europäische Zeichensätze:data = pd.read_csv(filepath, encoding="ISO-8859-1")
-
UTF-8 Kodierung:
Alternativ versuchen Sie es mit der UTF-8-Kodierung, die für weltweite Zeichensätze geeignet ist:data = pd.read_csv(filepath, encoding="utf-8")
Andere Aliase für ISO-8859-1, z B. „latin“ oder „cp1252“, können ebenfalls verwendet werden. Eine umfassende Liste der unterstützten Kodierungen finden Sie in der Pandas-Dokumentation oder der Python-Dokumentation.
Dateikodierung erkennen
Wenn Sie sich über die Kodierung der CSV-Datei nicht sicher sind, Sie können Tools wie enca, file -i unter Linux oder file -I unter macOS verwenden, um die richtige Kodierung zu ermitteln.
Zusätzlich Ressourcen
- [Pandas read_csv() Dokumentation](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html)
- [Python CSV-Modul Beispiele](https://docs.python.org/3/library/csv.html#examples)
- [Was jeder Entwickler über Unicode und Zeichensätze wissen sollte](https://unicode.org/ Berichte/tr15/)
Das obige ist der detaillierte Inhalt vonWie kann ich UnicodeDecodeError beim Lesen von CSV-Dateien in Pandas beheben?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Thedifferencebetweenaforloopandawhileloopinpythonisthataforloopisusedwhenthennumnofiterationssisknowninadvance, während

In Python eignen sich für Schleifen für Fälle, in denen die Anzahl der Iterationen bekannt ist, während Schleifen für Fälle geeignet sind, in denen die Anzahl der Iterationen unbekannt ist und mehr Kontrolle erforderlich ist. 1) Für Schleifen eignen sich zum Durchqueren von Sequenzen wie Listen, Zeichenfolgen usw. mit prägnantem und pythonischem Code. 2) Während Schleifen angemessener sind, wenn Sie die Schleife gemäß den Bedingungen steuern oder auf Benutzereingaben warten müssen, müssen Sie jedoch aufmerksam machen, um unendliche Schleifen zu vermeiden. 3) In Bezug auf die Leistung ist die für die Schleife etwas schneller, aber der Unterschied ist normalerweise nicht groß. Durch die Auswahl des richtigen Schleifentyps können Sie die Effizienz und Lesbarkeit Ihres Codes verbessern.

In Python können Listen mit fünf Methoden zusammengeführt werden: 1) Verwenden von Operatoren, die einfach und intuitiv sind, für kleine Listen geeignet sind; 2) Verwenden Sie die Extend () -Methode, um die ursprüngliche Liste direkt zu ändern, die für Listen geeignet sind, die häufig aktualisiert werden müssen. 3) Listenanalyseformeln verwenden, präzise und operativ für Elemente; 4) Verwenden Sie die Funktion iterertools.chain (), um den Speicher effizient zu machen, und für große Datensätze geeignet. 5) Verwenden Sie * Operatoren und Zip () -Funktion, um für Szenen geeignet zu sein, in denen Elemente gepaart werden müssen. Jede Methode hat ihre spezifischen Verwendungen und Vor- und Nachteile, und die Projektanforderungen und die Leistung sollten bei der Auswahl berücksichtigt werden.

Forloopsusedwhenthenumberofofiterationssisknown, whileleloopsusedUntilaconDitionisMet.1) Forloopsardealforsequenceslikelisten, usingSyntax -Like'forfruitinFruits: Print (Frucht) '. 2) WhileloopsuitableFoRuancnownitationCaperitationCountcounts, z. B., z. B., z

Toconcatenatealistoflistsinpython, usextend, listCompresions, itertools.chain, orrecursivefunctions.1) ExtendMethodisStraightforwardbutverbose.2) LISTCOMPRETRAUSIERUNGEN ITCOMPREDREPENSIONSARECONCISEIDEILGEFORTICEFORGELAGELAGERDATASETEN.

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software
