


So entschachteln (explodieren) Sie eine Spalte in einem Pandas-DataFrame in mehrere Zeilen
In Pandas umfasst das Auflösen einer Spalte die Umwandlung von Daten aus einer einzelnen Zeile in mehrere Zeilen . Dies ist nützlich, wenn Sie eine Spalte mit Listenzellen haben und diese in einzelne Zeilen aufteilen müssen.
Stellen Sie sich einen DataFrame mit einer Spalte „B“ vor, die Listen enthält:
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]}) Output: A B 0 1 [1, 2] 1 2 [1, 2]
An Wenn Sie diese Spalte „B“ auflösen, stellen wir verschiedene Methoden vor:
Methode 0 [Pandas >= 0,25]
Wenn Sie ab Pandas 0,25 nur eine Spalte auflösen müssen, verwenden Sie die Funktion pandas.DataFrame.explode:
df.explode('B') Output: A B 0 1 1 1 1 2 3 2 1 4 2 2
Methode 1
pd.Series anwenden (leicht zu verstehen, aber nicht empfohlen für Leistung):
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
Methode 2
Wiederholung mit DataFrame-Konstruktor verwenden:
df = pd.DataFrame({'A': df.A.repeat(df.B.str.len()), 'B': np.concatenate(df.B.values)})
Methode 3
Re -Erstellen Sie die Liste:
pd.DataFrame([[x] + [z] for x, y in df.values for z in y], columns=df.columns)
Methode 4
Reindex oder Loc verwenden:
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
Methode 5
Wenn die Liste nur eindeutige Werte enthält:
from collections import ChainMap d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A']))) pd.DataFrame(list(d.items()), columns=df.columns[::-1])
Methode 6
NumPy für hohe Werte verwenden Leistung:
newvalues = np.dstack((np.repeat(df.A.values, list(map(len, df.B.values))), np.concatenate(df.B.values))) pd.DataFrame(data=newvalues[0], columns=df.columns)
Methode 7
Verwendung von Itertools-Zyklus und -Kette:
from itertools import cycle, chain l = df.values.tolist() l1 = [list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l] pd.DataFrame(list(chain.from_iterable(l1)), columns=df.columns)
Verallgemeinerung auf mehrere Spalten
Um mehrere explodierende Spalten zu verarbeiten, kann eine Funktion verwendet werden definiert:
def unnesting(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how='left') unnesting(df, ['B', 'C'])
Spaltenweises Aufheben der Verschachtelung
Um eine Liste horizontal zu erweitern, verwenden Sie den pd.DataFrame-Konstruktor:
df.join(pd.DataFrame(df.B.tolist(), index=df.index).add_prefix('B_'))
Das obige ist der detaillierte Inhalt vonWie zerlege ich eine Pandas-DataFrame-Spalte in mehrere Zeilen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.

Python eignet sich für eine schnelle Entwicklung und Datenverarbeitung, während C für hohe Leistung und zugrunde liegende Kontrolle geeignet ist. 1) Python ist einfach zu bedienen, mit prägnanter Syntax, und eignet sich für Datenwissenschaft und Webentwicklung. 2) C hat eine hohe Leistung und eine genaue Kontrolle und wird häufig bei der Programmierung von Spielen und Systemen verwendet.

Die Zeit, die zum Erlernen von Python erforderlich ist, variiert von Person zu Person, hauptsächlich von früheren Programmiererfahrungen, Lernmotivation, Lernressourcen und -methoden und Lernrhythmus. Setzen Sie realistische Lernziele und lernen Sie durch praktische Projekte am besten.

Python zeichnet sich in Automatisierung, Skript und Aufgabenverwaltung aus. 1) Automatisierung: Die Sicherungssicherung wird durch Standardbibliotheken wie OS und Shutil realisiert. 2) Skriptschreiben: Verwenden Sie die PSUTIL -Bibliothek, um die Systemressourcen zu überwachen. 3) Aufgabenverwaltung: Verwenden Sie die Zeitplanbibliothek, um Aufgaben zu planen. Die Benutzerfreundlichkeit von Python und die Unterstützung der reichhaltigen Bibliothek machen es zum bevorzugten Werkzeug in diesen Bereichen.

Um die Effizienz des Lernens von Python in einer begrenzten Zeit zu maximieren, können Sie Pythons DateTime-, Zeit- und Zeitplanmodule verwenden. 1. Das DateTime -Modul wird verwendet, um die Lernzeit aufzuzeichnen und zu planen. 2. Das Zeitmodul hilft, die Studie zu setzen und Zeit zu ruhen. 3. Das Zeitplanmodul arrangiert automatisch wöchentliche Lernaufgaben.

Python zeichnet sich in Gaming und GUI -Entwicklung aus. 1) Spielentwicklung verwendet Pygame, die Zeichnungen, Audio- und andere Funktionen bereitstellt, die für die Erstellung von 2D -Spielen geeignet sind. 2) Die GUI -Entwicklung kann Tkinter oder Pyqt auswählen. Tkinter ist einfach und einfach zu bedienen. PYQT hat reichhaltige Funktionen und ist für die berufliche Entwicklung geeignet.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Dreamweaver CS6
Visuelle Webentwicklungstools