Einführung
Das Active Object Pattern ist ein Parallelitätsentwurfsmuster, das die Methodenausführung vom Methodenaufruf entkoppelt. Das Hauptziel dieses Musters besteht darin, asynchrones Verhalten einzuführen, indem Vorgänge in einem separaten Thread ausgeführt werden und gleichzeitig eine synchrone Schnittstelle für den Client bereitgestellt wird. Dies wird durch eine Kombination aus Nachrichtenübermittlung, Anforderungswarteschlangen und Planungsmechanismen erreicht.
Schlüsselkomponenten
- Proxy: Stellt die öffentliche Schnittstelle zum Client dar. Noch einfacher ausgedrückt ist es das, womit der Kunde interagieren wird. Es übersetzt Methodenaufrufe in Anfragen für das aktive Objekt.
- Scheduler: Verwaltet die Anforderungswarteschlange und bestimmt die Reihenfolge der Anforderungsausführung.
- Servant: Enthält die tatsächliche Implementierung der aufgerufenen Methoden. Hier kommt die eigentliche Berechnungslogik zum Einsatz.
- Aktivierungswarteschlange: Speichert die Anfragen vom Proxy, bis der Scheduler sie verarbeitet.
- Future/Callback: Ein Platzhalter für das Ergebnis einer asynchronen Berechnung.
Arbeitsablauf
- Ein Client ruft eine Methode auf dem Proxy auf.
- Der Proxy erstellt eine Anfrage und stellt sie in die Aktivierungswarteschlange.
- Der Planer nimmt die Anfrage auf und leitet sie zur Ausführung an den Bediensteten weiter.
- Das Ergebnis wird über ein zukünftiges Objekt an den Client zurückgegeben.
Anwendungsfälle
- Echtzeitsysteme, die vorhersehbare Ausführungsmuster erfordern.
- GUI-Anwendungen, damit der Hauptthread reaktionsfähig bleibt.
- Verteilte Systeme zur Bearbeitung asynchroner Anfragen.
Durchführung
Nehmen wir an, wir müssen eine Berechnung durchführen, vielleicht einen API-Aufruf, eine Datenbankabfrage usw. Ich werde keine Ausnahmebehandlung implementieren, weil ich zu faul bin.
def compute(x, y): time.sleep(2) # Some time taking task return x + y
Ohne aktives Objektmuster
Unten finden Sie ein Beispiel dafür, wie wir gleichzeitige Anfragen ohne Verwendung des Active Object Pattern verarbeiten können.
import threading import time def main(): # Start threads directly results = {} def worker(task_id, x, y): results[task_id] = compute(x, y) print("Submitting tasks...") thread1 = threading.Thread(target=worker, args=(1, 5, 10)) thread2 = threading.Thread(target=worker, args=(2, 15, 20)) thread1.start() thread2.start() print("Doing other work...") thread1.join() thread2.join() # Retrieve results print("Result 1:", results[1]) print("Result 2:", results[2]) if __name__ == "__main__": main()
Nachteile des oben genannten Ansatzes
Thread-Management:Die direkte Verwaltung von Threads erhöht die Komplexität, insbesondere wenn die Anzahl der Aufgaben wächst.
Mangelnde Abstraktion: Der Kunde ist für die Verwaltung des Lebenszyklus von Threads verantwortlich und koppelt die Aufgabenverwaltung mit der Geschäftslogik.
Skalierbarkeitsprobleme: Ohne eine ordnungsgemäße Warteschlange oder einen Planungsmechanismus gibt es keine Kontrolle über die Reihenfolge der Aufgabenausführung.
Eingeschränkte Reaktionsfähigkeit: Der Client muss warten, bis Threads beitreten, bevor er auf Ergebnisse zugreifen kann.
Implementierung mit Active Object Pattern
Unten finden Sie eine Python-Implementierung des Active Object Pattern, die Threading und Warteschlangen verwendet, um das Gleiche wie oben zu tun. Wir gehen jeden Teil einzeln durch:
MethodRequest: Kapselt die Methode, Argumente und einen Future zum Speichern des Ergebnisses.
def compute(x, y): time.sleep(2) # Some time taking task return x + y
Scheduler: Verarbeitet kontinuierlich Anfragen aus der Aktivierungswarteschlange in einem separaten Thread.
import threading import time def main(): # Start threads directly results = {} def worker(task_id, x, y): results[task_id] = compute(x, y) print("Submitting tasks...") thread1 = threading.Thread(target=worker, args=(1, 5, 10)) thread2 = threading.Thread(target=worker, args=(2, 15, 20)) thread1.start() thread2.start() print("Doing other work...") thread1.join() thread2.join() # Retrieve results print("Result 1:", results[1]) print("Result 2:", results[2]) if __name__ == "__main__": main()
Servant: Implementiert die eigentliche Logik (z. B. die Berechnungsmethode).
class MethodRequest: def __init__(self, method, args, kwargs, future): self.method = method self.args = args self.kwargs = kwargs self.future = future def execute(self): try: result = self.method(*self.args, **self.kwargs) self.future.set_result(result) except Exception as e: self.future.set_exception(e)
Proxy: Übersetzt Methodenaufrufe in Anfragen und gibt einen Future für das Ergebnis zurück.
import threading import queue class Scheduler(threading.Thread): def __init__(self): super().__init__() self.activation_queue = queue.Queue() self._stop_event = threading.Event() def enqueue(self, request): self.activation_queue.put(request) def run(self): while not self._stop_event.is_set(): try: request = self.activation_queue.get(timeout=0.1) request.execute() except queue.Empty: continue def stop(self): self._stop_event.set() self.join()
Client: Übermittelt Aufgaben asynchron und ruft bei Bedarf Ergebnisse ab.
import time class Servant: def compute(self, x, y): time.sleep(2) return x + y
Vorteile
- Entkoppelte Schnittstelle: Clients können Methoden aufrufen, ohne sich um die Ausführungsdetails kümmern zu müssen.
- Reaktionsfähigkeit: Die asynchrone Ausführung stellt sicher, dass der Client reaktionsfähig bleibt.
- Skalierbarkeit: Unterstützt mehrere gleichzeitige Anfragen.
Nachteile
- Komplexität: Erhöht die architektonische Komplexität.
- Overhead: Erfordert zusätzliche Ressourcen für die Verwaltung von Threads und Warteschlangen.
- Latenz: Asynchrone Verarbeitung kann zu zusätzlicher Latenz führen.
Abschluss
Das Active Object Pattern ist ein leistungsstarkes Tool zur Verwaltung asynchroner Vorgänge in Multithread-Umgebungen. Durch die Trennung des Methodenaufrufs von der Ausführung wird eine bessere Reaktionsfähigkeit, Skalierbarkeit und eine sauberere Codebasis gewährleistet. Obwohl es mit einer gewissen Komplexität und potenziellem Leistungsaufwand verbunden ist, ist es aufgrund seiner Vorteile eine ausgezeichnete Wahl für Szenarien, die eine hohe Parallelität und vorhersehbare Ausführung erfordern. Der Einsatz hängt jedoch von der konkreten Problemstellung ab. Wie bei den meisten Mustern und Algorithmen gibt es keine einheitliche Lösung.
Referenzen
Wikipedia – Aktives Objekt
Das obige ist der detaillierte Inhalt vonParallelitätsmuster: Aktives Objekt. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Ist es genug, um Python für zwei Stunden am Tag zu lernen? Es hängt von Ihren Zielen und Lernmethoden ab. 1) Entwickeln Sie einen klaren Lernplan, 2) Wählen Sie geeignete Lernressourcen und -methoden aus, 3) praktizieren und prüfen und konsolidieren Sie praktische Praxis und Überprüfung und konsolidieren Sie und Sie können die Grundkenntnisse und die erweiterten Funktionen von Python während dieser Zeit nach und nach beherrschen.

Zu den wichtigsten Anwendungen von Python in der Webentwicklung gehören die Verwendung von Django- und Flask -Frameworks, API -Entwicklung, Datenanalyse und Visualisierung, maschinelles Lernen und KI sowie Leistungsoptimierung. 1. Django und Flask Framework: Django eignet sich für die schnelle Entwicklung komplexer Anwendungen, und Flask eignet sich für kleine oder hochmobile Projekte. 2. API -Entwicklung: Verwenden Sie Flask oder Djangorestframework, um RESTFUFFUPI zu erstellen. 3. Datenanalyse und Visualisierung: Verwenden Sie Python, um Daten zu verarbeiten und über die Webschnittstelle anzuzeigen. 4. Maschinelles Lernen und KI: Python wird verwendet, um intelligente Webanwendungen zu erstellen. 5. Leistungsoptimierung: optimiert durch asynchrones Programmieren, Caching und Code

Python ist in der Entwicklungseffizienz besser als C, aber C ist in der Ausführungsleistung höher. 1. Pythons prägnante Syntax und reiche Bibliotheken verbessern die Entwicklungseffizienz. 2. Die Kompilierungsmerkmale von Compilation und die Hardwarekontrolle verbessern die Ausführungsleistung. Bei einer Auswahl müssen Sie die Entwicklungsgeschwindigkeit und die Ausführungseffizienz basierend auf den Projektanforderungen abwägen.

Zu den realen Anwendungen von Python gehören Datenanalysen, Webentwicklung, künstliche Intelligenz und Automatisierung. 1) In der Datenanalyse verwendet Python Pandas und Matplotlib, um Daten zu verarbeiten und zu visualisieren. 2) In der Webentwicklung vereinfachen Django und Flask Frameworks die Erstellung von Webanwendungen. 3) Auf dem Gebiet der künstlichen Intelligenz werden Tensorflow und Pytorch verwendet, um Modelle zu bauen und zu trainieren. 4) In Bezug auf die Automatisierung können Python -Skripte für Aufgaben wie das Kopieren von Dateien verwendet werden.

Python wird häufig in den Bereichen Data Science, Web Development und Automation Scripting verwendet. 1) In der Datenwissenschaft vereinfacht Python die Datenverarbeitung und -analyse durch Bibliotheken wie Numpy und Pandas. 2) In der Webentwicklung ermöglichen die Django- und Flask -Frameworks Entwicklern, Anwendungen schnell zu erstellen. 3) In automatisierten Skripten machen Pythons Einfachheit und Standardbibliothek es ideal.

Die Flexibilität von Python spiegelt sich in Multi-Paradigm-Unterstützung und dynamischen Typsystemen wider, während eine einfache Syntax und eine reichhaltige Standardbibliothek stammt. 1. Flexibilität: Unterstützt objektorientierte, funktionale und prozedurale Programmierung und dynamische Typsysteme verbessern die Entwicklungseffizienz. 2. Benutzerfreundlichkeit: Die Grammatik liegt nahe an der natürlichen Sprache, die Standardbibliothek deckt eine breite Palette von Funktionen ab und vereinfacht den Entwicklungsprozess.

Python ist für seine Einfachheit und Kraft sehr beliebt, geeignet für alle Anforderungen von Anfängern bis hin zu fortgeschrittenen Entwicklern. Seine Vielseitigkeit spiegelt sich in: 1) leicht zu erlernen und benutzten, einfachen Syntax; 2) Reiche Bibliotheken und Frameworks wie Numpy, Pandas usw.; 3) plattformübergreifende Unterstützung, die auf einer Vielzahl von Betriebssystemen betrieben werden kann; 4) Geeignet für Skript- und Automatisierungsaufgaben zur Verbesserung der Arbeitseffizienz.

Ja, lernen Sie Python in zwei Stunden am Tag. 1. Entwickeln Sie einen angemessenen Studienplan, 2. Wählen Sie die richtigen Lernressourcen aus, 3. Konsolidieren Sie das durch die Praxis erlernte Wissen. Diese Schritte können Ihnen helfen, Python in kurzer Zeit zu meistern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

DVWA
Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor