Warum Javas hashCode() in String 31 als Multiplikator verwendet
In Java wird der Hash-Code für ein String-Objekt mithilfe von berechnet Formel:
s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
wobei s[i] das i-te Zeichen der Zeichenfolge ist, n die Länge von die Zeichenfolge, und ^ gibt Potenzierung an.
Die Bedeutung eines Primzahlmultiplikators
Ein wichtiger Aspekt dieser Formel ist die Verwendung eines Primzahlmultiplikators, in diesem Fall 31. Die Verwendung einer Primzahl hat den Vorteil, dass die Wahrscheinlichkeit von Hash-Kollisionen verringert wird. Wenn ein Nicht-Primzahl-Multiplikator verwendet würde, könnten zwei Zeichenfolgen mit demselben Hash-Wert einen gemeinsamen Faktor haben, was das Auftreten von Hash-Kollisionen erleichtert.
Warum nicht eine andere Primzahl?
Während 31 eine ungerade Primzahl ist, könnten auch andere Primzahlen gewählt werden, wie zum Beispiel 29, 37 oder 97. Die Wahl von 31 basierte auf einer Kombination von Faktoren:
- Überlauf vermeiden: 31 ist eine relativ kleine Primzahl, die das Risiko eines ganzzahligen Überlaufs während des Multiplikationsprozesses verringert. Wenn eine gerade Primzahl verwendet würde, könnte es bei der Multiplikation mit 2 zu einem Überlauf kommen, wodurch möglicherweise Informationen verloren gehen.
- Leistungsoptimierung: Wie von Joshua Bloch in „Effective Java“ festgestellt, kann die Multiplikation mit 31 durch eine effizientere Verschiebungs- und Subtraktionsoperation ersetzt werden: 31 * i == (i
- Tradition: Die Verwendung eines Primzahlmultiplikators für Hash-Funktionen ist eine langjährige Praxis, und 31 ist eine besonders beliebte Wahl. Obwohl es keinen eindeutigen Grund dafür gibt, warum 31 speziell ausgewählt wurde, ist es in vielen Programmiersprachen und Anwendungen zur Standardauswahl geworden.
Das obige ist der detaillierte Inhalt vonWarum verwendet Javas String hashCode() 31 als Multiplikator?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Java wird aufgrund seiner Unabhängigkeit der Plattform in Anwendungen auf Unternehmensebene häufig verwendet. 1) Die Unabhängigkeit der Plattform wird über Java Virtual Machine (JVM) implementiert, sodass der Code auf jeder Plattform ausgeführt wird, die Java unterstützt. 2) Sie vereinfacht die plattformübergreifenden Bereitstellungs- und Entwicklungsprozesse und bieten mehr Flexibilität und Skalierbarkeit. 3) Es ist jedoch notwendig, auf Leistungsunterschiede und die Kompatibilität der Bibliotheksbibliothek zu achten und Best Practices wie die Verwendung von reinen Java-Code und plattformübergreifenden Tests einzusetzen.

JavaplaysaSignificantroleiniotduetoitsplattformindependence.1) ItallowsCodetobewrittenonceandrunonvariousDevices.2) Java'secosystemProvideburlibibrarysForiot.3) ErschöpfungsmusternhanzeIsStemsFepyStemsafaftEdEpety

ThemeolutionToHandleFilepathsacrosswindowsandlinuxinjavaistousepaths.get () von Thejava.nio.FilePackage.1) usepaths

Java'splatformindependenceissignificantbecauseitallowsdeveloperstowritecodeonceandrunitonanyplatformwithaJVM.This"writeonce,runanywhere"(WORA)approachoffers:1)Cross-platformcompatibility,enablingdeploymentacrossdifferentOSwithoutissues;2)Re

Java eignet sich für die Entwicklung von Cross-Server-Webanwendungen. 1) Javas Philosophie "einmal schreiben, überall rennen" lässt ihren Code auf jeder Plattform ausgeführt, die JVM unterstützt. 2) Java verfügt über ein reichhaltiges Ökosystem, einschließlich Tools wie Frühling und Winterschlaf, um den Entwicklungsprozess zu vereinfachen. 3) Java spielt hervorragend in Bezug auf Leistung und Sicherheit und bietet effizientes Speichermanagement und starke Sicherheitsgarantien.

JVM implementiert die Wora-Merkmale von Java durch Bytecode-Interpretation, plattformunabhängige APIs und dynamische Klassenbelastung: 1. Bytecode wird als Maschinencode interpretiert, um einen plattformübergreifenden Betrieb sicherzustellen. 2. Unterschiede zwischen API -abstrakter Betriebssystem; 3. Die Klassen werden zur Laufzeit dynamisch geladen, um eine Konsistenz zu gewährleisten.

Die neueste Version von Java löst effektiv plattformspezifische Probleme durch JVM-Optimierung, Standardbibliotheksverbesserungen und Unterstützung von Drittanbietern. 1) JVM -Optimierung, wie der ZGC von Java11, verbessert die Leistung der Müllsammlung. 2) Standardbibliotheksverbesserungen wie das Modulsystem von Java9, das plattformbedingte Probleme reduziert. 3) Bibliotheken von Drittanbietern bieten plattformoptimierte Versionen wie OpenCV.

Der Bytecode -Überprüfungsprozess des JVM enthält vier wichtige Schritte: 1) Überprüfen Sie, ob das Klassendateiformat den Spezifikationen entspricht, 2) Überprüfen Sie die Gültigkeit und Korrektheit der Bytecode -Anweisungen, 3) die Datenflussanalyse durchführen, um die Sicherheitstypsicherheit zu gewährleisten, und 4) Ausgleich der gründlichen Überprüfung und Leistung der Verifizierung. Durch diese Schritte stellt die JVM sicher, dass nur sichere, korrekte Bytecode ausgeführt wird, wodurch die Integrität und Sicherheit des Programms geschützt wird.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.
