suchen
HeimBackend-EntwicklungPython-TutorialWie kann ich eine unveränderliche Kopie einer Liste in Python erstellen?

How Can I Create an Immutable Copy of a List in Python?

Erstellen einer unveränderlichen Listenkopie

In Python wirken sich Änderungen an new_list beim Zuweisen von Listenreferenzen wie new_list = my_list überraschenderweise auf my_list aus. Dies liegt daran, dass Python nicht eine eindeutige neue Liste erstellt, sondern lediglich den Verweis auf die tatsächliche Liste kopiert, was dazu führt, dass sowohl new_list als auch my_list auf dieselbe Liste verweisen.

Um dieses Problem zu beheben und unerwartete Änderungen zu verhindern, ist es wichtig, Folgendes zu tun Erstellen Sie mit verschiedenen Methoden eine echte Kopie der Liste.

Klonen einer Liste

Um eine unveränderliche zu erhalten Wenn Sie eine Liste klonen oder eine flache Kopie erstellen möchten, berücksichtigen Sie die folgenden Optionen:

  • list.copy() Methode (Python 3.3):
new_list = old_list.copy()
  • Liste Slicing:
new_list = old_list[:]
  • list() Konstruktor:
new_list = list(old_list)

Deep Copying einer Liste

Wenn Sie auch die Elemente der Liste kopieren müssen, verwenden Sie deep Kopieren:

import copy
new_list = copy.deepcopy(old_list)

Beispiel

Betrachten Sie den folgenden Code:

import copy

class Foo:
    def __init__(self, val):
         self.val = val

    def __repr__(self):
        return f'Foo({self.val!r})'

foo = Foo(1)

a = ['foo', foo]
b = a.copy()
c = a[:]
d = list(a)
e = copy.copy(a)
f = copy.deepcopy(a)

# edit orignal list and instance 
a.append('baz')
foo.val = 5

print(f'original: {a}\nlist.copy(): {b}\nslice: {c}\nlist(): {d}\ncopy: {e}\ndeepcopy: {f}')

Ergebnis:

original: ['foo', Foo(5), 'baz']
list.copy(): ['foo', Foo(5)]
slice: ['foo', Foo(5)]
list(): ['foo', Foo(5)]
copy: ['foo', Foo(5)]
deepcopy: ['foo', Foo(1)]

Dies zeigt, wie sich Änderungen an der Originalliste und ihren Instanzen nur auf die Originalliste und nicht auf deren Originalliste auswirken kopierte Versionen (b, c, d und f).

Das obige ist der detaillierte Inhalt vonWie kann ich eine unveränderliche Kopie einer Liste in Python erstellen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie werden Arrays im wissenschaftlichen Computer mit Python verwendet?Wie werden Arrays im wissenschaftlichen Computer mit Python verwendet?Apr 25, 2025 am 12:28 AM

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Wie gehen Sie mit verschiedenen Python -Versionen im selben System um?Wie gehen Sie mit verschiedenen Python -Versionen im selben System um?Apr 25, 2025 am 12:24 AM

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

Was sind einige Vorteile bei der Verwendung von Numpy -Arrays gegenüber Standard -Python -Arrays?Was sind einige Vorteile bei der Verwendung von Numpy -Arrays gegenüber Standard -Python -Arrays?Apr 25, 2025 am 12:21 AM

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

Wie wirkt sich die homogene Natur der Arrays auf die Leistung aus?Wie wirkt sich die homogene Natur der Arrays auf die Leistung aus?Apr 25, 2025 am 12:13 AM

Der Einfluss der Homogenität von Arrays auf die Leistung ist doppelt: 1) Homogenität ermöglicht es dem Compiler, den Speicherzugriff zu optimieren und die Leistung zu verbessern. 2) aber begrenzt die Typ -Vielfalt, was zu Ineffizienz führen kann. Kurz gesagt, die Auswahl der richtigen Datenstruktur ist entscheidend.

Was sind einige Best Practices für das Schreiben von ausführbaren Python -Skripten?Was sind einige Best Practices für das Schreiben von ausführbaren Python -Skripten?Apr 25, 2025 am 12:11 AM

TocraftexecutablePythonScripts, folge theseBestPractices: 1) addashebangline (#!/Usr/bin/envpython3) tomakethescriptexcutable.2 SetPermissions withchmod xyour_script.py.3) organisation -bithacleardocstringanduseInname == "__ __": FormAcleardocstringanduseInname

Wie unterscheiden sich Numpy Arrays von den Arrays, die mit dem Array -Modul erstellt wurden?Wie unterscheiden sich Numpy Arrays von den Arrays, die mit dem Array -Modul erstellt wurden?Apr 24, 2025 pm 03:53 PM

NumpyarraysarebetterFornumericaloperations und multi-dimensionaldata, whilethearraymoduleiStableforbasic, an Gedächtniseffizienten

Wie vergleichen sich die Verwendung von Numpy -Arrays mit der Verwendung der Array -Modularrays in Python?Wie vergleichen sich die Verwendung von Numpy -Arrays mit der Verwendung der Array -Modularrays in Python?Apr 24, 2025 pm 03:49 PM

NumpyarraysarebetterforeheavynumericalComputing, während der projectwithsimpledatatypes.1) numpyarraysoferversatility und -PerformanceForlargedataSets und Compoxexoperations.2) thearraysoferversStility und Mächnory-Effefef

Wie bezieht sich das CTypes -Modul auf Arrays in Python?Wie bezieht sich das CTypes -Modul auf Arrays in Python?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingandmanipulationsc-stylearraysinpython.1) usectypestoInterfaceWithClibraryForperformance.2) createCec-stylearraysFornumericalComputationen.3) PassarrayStocfunctionsFectionFicecher-Operationen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools