Heim >Backend-Entwicklung >Python-Tutorial >Wie können NumPy-Arrays effizient gerechtfertigt (verschoben) werden?
Optimierungscode zum Verschieben von Inhalten in einer Matrix wird für die Verwendung in einer 2048-Spieldemo gesucht. Insbesondere werden Funktionen benötigt, um Nicht-Null-Werte in der Matrix nach links, rechts, oben oder unten zu verschieben.
Der bereitgestellte Code bietet einen vektorisierten Ansatz, der von inspiriert ist ein weiterer Beitrag:
def justify(a, invalid_val=0, axis=1, side='left'): """ Justifies a 2D array Parameters ---------- A : ndarray Input array to be justified axis : int Axis along which justification is to be made side : str Direction of justification. It could be 'left', 'right', 'up', 'down' It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0. """ if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if (side=='up') | (side=='left'): justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if axis==1: out[justified_mask] = a[mask] else: out.T[justified_mask.T] = a.T[mask.T] return out
In [473]: a # input array Out[473]: array([[1, 0, 2, 0], [3, 0, 4, 0], [5, 0, 6, 0], [6, 7, 0, 8]]) In [474]: justify(a, axis=0, side='up') Out[474]: array([[1, 7, 2, 8], [3, 0, 4, 0], [5, 0, 6, 0], [6, 0, 0, 0]]) In [475]: justify(a, axis=0, side='down') Out[475]: array([[1, 0, 0, 0], [3, 0, 2, 0], [5, 0, 4, 0], [6, 7, 6, 8]]) In [476]: justify(a, axis=1, side='left') Out[476]: array([[1, 2, 0, 0], [3, 4, 0, 0], [5, 6, 0, 0], [6, 7, 8, 0]]) In [477]: justify(a, axis=1, side='right') Out[477]: array([[0, 0, 1, 2], [0, 0, 3, 4], [0, 0, 5, 6], [0, 6, 7, 8]])
Für ein generisches n-dimensionales Array kann der Code wie folgt geändert werden:
def justify_nd(a, invalid_val, axis, side): """ Justify ndarray for the valid elements (that are not invalid_val). Parameters ---------- A : ndarray Input array to be justified invalid_val : scalar invalid value axis : int Axis along which justification is to be made side : str Direction of justification. Must be 'front' or 'end'. So, with 'front', valid elements are pushed to the front and with 'end' valid elements are pushed to the end along specified axis. """ pushax = lambda a: np.moveaxis(a, axis, -1) if invalid_val is np.nan: mask = ~np.isnan(a) else: mask = a!=invalid_val justified_mask = np.sort(mask,axis=axis) if side=='front': justified_mask = np.flip(justified_mask,axis=axis) out = np.full(a.shape, invalid_val) if (axis==-1) or (axis==a.ndim-1): out[justified_mask] = a[mask] else: pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(mask)] return out
In [87]: a Out[87]: array([[[54, 57, 0, 77], [77, 0, 0, 31], [46, 0, 0, 98], [98, 22, 68, 75]], [[49, 0, 0, 98], [ 0, 47, 0, 87], [82, 19, 0, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 0], [29, 0, 0, 49], [42, 75, 0, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 38], [44, 10, 0, 0], [63, 0, 0, 0], [89, 14, 0, 0]]])
Nach „vorne“, entlang der Achse =0 :
In [88]: justify_nd(a, invalid_val=0, axis=0, side='front') Out[88]: array([[[54, 57, 0, 77], [77, 47, 0, 31], [46, 19, 0, 98], [98, 22, 68, 75]], [[49, 0, 0, 98], [29, 10, 0, 87], [82, 75, 0, 90], [79, 89, 57, 74]], [[ 0, 0, 0, 38], [44, 0, 0, 49], [42, 0, 0, 67], [42, 41, 84, 33]], [[ 0, 0, 0, 0], [ 0, 0, 0, 0], [63, 0, 0, 0], [89, 14, 0, 0]]])
Entlang der Achse=1 :
In [89]: justify_nd(a, invalid_val=0, axis=1, side='front') Out[89]: array([[[54, 57, 68, 77], [77, 22, 0, 31], [46, 0, 0, 98], [98, 0, 0, 75]], [[49, 47, 57, 98], [82, 19, 0, 87], [79, 89, 0, 90], [ 0, 0, 0, 74]], [[29, 75, 84, 49], [42, 41, 0, 67], [42, 0, 0, 33], [ 0, 0, 0, 0]], [[44, 10, 0, 38], [63, 14, 0, 0], [89, 0, 0, 0], [ 0, 0, 0, 0]]])
Entlang der Achse=2 :
Das obige ist der detaillierte Inhalt vonWie können NumPy-Arrays effizient gerechtfertigt (verschoben) werden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!