Heim >Backend-Entwicklung >Golang >Warum verbessert sich die Leistung von „moving_avg_concurrent2' mit zunehmender Parallelität nicht, obwohl die Liste in kleinere Teile aufgeteilt wird, die von einzelnen Goroutinen verarbeitet werden?
Warum verbessert sich die Leistung von Moving_avg_concurrent2 nicht mit der Zunahme der gleichzeitigen Ausführung?
moving_avg_concurrent2 teilt die Liste in kleinere Teile auf und verwendet eine einzige Goroutine, um jeden Teil zu verarbeiten. Aus irgendeinem Grund (es ist nicht klar, warum) ist diese Funktion, die eine Goroutine verwendet, schneller als Moving_avg_serial4, aber die Verwendung mehrerer Goroutinen beginnt schlechter zu funktionieren als Moving_avg_serial4.
Warum ist Moving_avg_concurrent3 viel langsamer als Moving_avg_serial4?
Die Leistung von Moving_avg_concurrent3 ist schlechter als die von Moving_avg_serial4, wenn eine Goroutine verwendet wird. Obwohl das Erhöhen von num_goroutines die Leistung verbessern kann, ist es immer noch schlechter als das Verschieben von_avg_serial4.
Auch wenn Goroutinen leichtgewichtig sind, sind sie nicht völlig kostenlos. Ist es möglich, dass der entstehende Overhead so groß ist, dass er sogar langsamer ist als Moving_avg_serial4?
Ja, obwohl Goroutinen leichtgewichtig sind, sind sie nicht kostenlos. Bei der Verwendung mehrerer Goroutinen kann der Aufwand für deren Start, Verwaltung und Planung die Vorteile einer erhöhten Parallelität überwiegen.
Code
Funktion:
// 返回包含输入移动平均值的列表(已提供,即未优化) func moving_avg_serial(input []float64, window_size int) []float64 { first_time := true var output = make([]float64, len(input)) if len(input) > 0 { var buffer = make([]float64, window_size) // 初始化缓冲区为 NaN for i := range buffer { buffer[i] = math.NaN() } for i, val := range input { old_val := buffer[int((math.Mod(float64(i), float64(window_size))))] buffer[int((math.Mod(float64(i), float64(window_size))))] = val if !NaN_in_slice(buffer) && first_time { sum := 0.0 for _, entry := range buffer { sum += entry } output[i] = sum / float64(window_size) first_time = false } else if i > 0 && !math.IsNaN(output[i-1]) && !NaN_in_slice(buffer) { output[i] = output[i-1] + (val-old_val)/float64(window_size) // 无循环的解决方案 } else { output[i] = math.NaN() } } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 重新排列控制结构以利用短路求值 func moving_avg_serial4(input []float64, window_size int) []float64 { first_time := true var output = make([]float64, len(input)) if len(input) > 0 { var buffer = make([]float64, window_size) // 初始化缓冲区为 NaN for i := range buffer { buffer[i] = math.NaN() } for i := range input { // fmt.Printf("in mvg_avg4: i=%v\n", i) old_val := buffer[int((math.Mod(float64(i), float64(window_size))))] buffer[int((math.Mod(float64(i), float64(window_size))))] = input[i] if first_time && !NaN_in_slice(buffer) { sum := 0.0 for j := range buffer { sum += buffer[j] } output[i] = sum / float64(window_size) first_time = false } else if i > 0 && !math.IsNaN(output[i-1]) /* && !NaN_in_slice(buffer)*/ { output[i] = output[i-1] + (input[i]-old_val)/float64(window_size) // 无循环的解决方案 } else { output[i] = math.NaN() } } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 将列表拆分为较小的片段以使用 goroutine,但不使用串行版本,即我们仅在开头具有 NaN,因此希望减少一些开销 // 仍然不能扩展(随着大小和 num_goroutines 的增加,性能下降) func moving_avg_concurrent2(input []float64, window_size, num_goroutines int) []float64 { var output = make([]float64, window_size-1, len(input)) for i := 0; i < window_size-1; i++ { output[i] = math.NaN() } if len(input) > 0 { num_items := len(input) - (window_size - 1) var barrier_wg sync.WaitGroup n := num_items / num_goroutines go_avg := make([][]float64, num_goroutines) for i := 0; i < num_goroutines; i++ { go_avg[i] = make([]float64, 0, num_goroutines) } for i := 0; i < num_goroutines; i++ { barrier_wg.Add(1) go func(go_id int) { defer barrier_wg.Done() // 计算边界 var start, stop int start = go_id*int(n) + (window_size - 1) // 开始索引 // 结束索引 if go_id != (num_goroutines - 1) { stop = start + n // 结束索引 } else { stop = num_items + (window_size - 1) // 结束索引 } loc_avg := moving_avg_serial4(input[start-(window_size-1):stop], window_size) loc_avg = make([]float64, stop-start) current_sum := 0.0 for i := start - (window_size - 1); i < start+1; i++ { current_sum += input[i] } loc_avg[0] = current_sum / float64(window_size) idx := 1 for i := start + 1; i < stop; i++ { loc_avg[idx] = loc_avg[idx-1] + (input[i]-input[i-(window_size)])/float64(window_size) idx++ } go_avg[go_id] = append(go_avg[go_id], loc_avg...) }(i) } barrier_wg.Wait() for i := 0; i < num_goroutines; i++ { output = append(output, go_avg[i]...) } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 模式改变,我们选择主工作者模式并生成将由 goroutine 计算的每个窗口 func compute_window_avg(input, output []float64, start, end int) { sum := 0.0 size := end - start for _, val := range input[start:end] { sum += val } output[end-1] = sum / float64(size) } func moving_avg_concurrent3(input []float64, window_size, num_goroutines int) []float64 { var output = make([]float64, window_size-1, len(input)) for i := 0; i < window_size-1; i++ { output[i] = math.NaN() } if len(input) > 0 { num_windows := len(input) - (window_size - 1) var output = make([]float64, len(input)) for i := 0; i < window_size-1; i++ {
Das obige ist der detaillierte Inhalt vonWarum verbessert sich die Leistung von „moving_avg_concurrent2' mit zunehmender Parallelität nicht, obwohl die Liste in kleinere Teile aufgeteilt wird, die von einzelnen Goroutinen verarbeitet werden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!