suchen
HeimBackend-EntwicklungPython-TutorialWas ist der Hauptunterschied zwischen den Python-Operatoren „==' und „is'?

What's the Key Difference Between Python's

Gibt es eine subtile Nuance zwischen „==" und „is" in Python?

In Python wird der Unterschied zwischen oft übersehen Gleichheitsoperator „==“ und der Identitätsoperator „is“. Es ist von entscheidender Bedeutung, ihre unterschiedlichen Rollen zu verstehen.

Gleichheit vs. Identität

"==" vergleicht die Werte zweier Operanden, während "is" prüft, ob sie auf dasselbe verweisen Objekt im Gedächtnis. Dieser Unterschied wird beim Vergleich von Ganzzahlen deutlich, da Python kleine Ganzzahlen (

Objekte und Instanzen

Bei Objekten wie Listen wertet „==" aus, ob die Listenwerte gleich sind, während „is" bestimmt, ob es sich um dieselbe Instanz handelt. Wie im Beispiel zu sehen ist, entspricht „[1]“ dem Listenobjekt, ist aber nicht dasselbe Objekt: „is“ gibt False zurück.

Ausnahmen

Es gibt Ausnahmen von diesen Regeln. String-Literale mit identischem Inhalt verwenden dasselbe Objekt, daher gilt „a“ sowohl für „==“ als auch für „is“. Veränderliche Objekte wie Listen werden jedoch nicht auf diese Weise zwischengespeichert. Folglich ist „a[0] ist b[0]“ falsch, auch wenn sie identische Werte enthalten.

Praktische Anwendungen

Das Verständnis des Unterschieds ist für Aufgaben wie z. B. unerlässlich Objektidentifikation. Wenn wir beispielsweise mehrere Variablen haben, die auf dieselbe Liste verweisen, können wir mit „is“ überprüfen, ob es sich bei allen um Verweise auf dasselbe zugrunde liegende Objekt handelt.

Schlussfolgerung

Das Verständnis des Unterschieds zwischen „==“ und „is“ ist bei der Python-Programmierung von größter Bedeutung. „==“ vergleicht Werte, während „is“ die Objektidentität bewertet. Diese Unterscheidung ist entscheidend beim Umgang mit veränderlichen Objekten und Objektreferenzen.

Das obige ist der detaillierte Inhalt vonWas ist der Hauptunterschied zwischen den Python-Operatoren „==' und „is'?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal?Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal?Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Mar 10, 2025 pm 06:54 PM

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Mathematische Module in Python: StatistikMathematische Module in Python: StatistikMar 09, 2025 am 11:40 AM

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Mar 10, 2025 pm 06:52 PM

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren?Wie kann ich die gesamte Spalte eines Datenrahmens effizient in einen anderen Datenrahmen mit verschiedenen Strukturen in Python kopieren?Apr 01, 2025 pm 11:15 PM

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

Wie erstelle ich Befehlszeilenschnittstellen (CLIS) mit Python?Wie erstelle ich Befehlszeilenschnittstellen (CLIS) mit Python?Mar 10, 2025 pm 06:48 PM

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

Was sind einige beliebte Python -Bibliotheken und ihre Verwendung?Was sind einige beliebte Python -Bibliotheken und ihre Verwendung?Mar 21, 2025 pm 06:46 PM

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Erklären Sie den Zweck virtueller Umgebungen in Python.Erklären Sie den Zweck virtueller Umgebungen in Python.Mar 19, 2025 pm 02:27 PM

Der Artikel erörtert die Rolle virtueller Umgebungen in Python und konzentriert sich auf die Verwaltung von Projektabhängigkeiten und die Vermeidung von Konflikten. Es beschreibt ihre Erstellung, Aktivierung und Vorteile bei der Verbesserung des Projektmanagements und zur Verringerung der Abhängigkeitsprobleme.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),