So durchlaufen Sie zwei Listen parallel
Bei zwei Listen besteht eine häufige Aufgabe darin, sie paarweise zu durchlaufen. Das Iterieren über Indizes ist zwar ein praktikabler Ansatz, aber möglicherweise nicht die pythonischste Lösung.
Python 3-Lösung
In Python 3 gibt die Funktion zip() einen Iterator von Tupeln zurück und erstellt so eine effiziente und prägnante Möglichkeit, mehrere Iterables parallel zu durchlaufen. Die Syntax lautet:
for element_1, element_2 in zip(iterable_1, iterable_2): ...
for f, b in zip(foo, bar): print(f, b)
Python 2-Lösung
In Python 2 gibt zip() eine Liste von Tupeln zurück, was bei großen Datensätzen ineffizient sein kann. Um die Erstellung unnötiger temporärer Variablen zu vermeiden, sollten Sie stattdessen die Verwendung von itertools.izip() für einen Iterator in Betracht ziehen:
import itertools for f, b in itertools.izip(foo, bar): print(f, b)
Falls gewünscht, kann itertools.izip_longest() zum Iterieren verwendet werden, bis beide Iterables erschöpft sind, wobei fehlende Elemente aufgefüllt werden Werte mit dem angegebenen Füllwert (oder standardmäßig Keine).
Schlüssel Punkte
- Die zip()-Funktion kann mehrere Iterables gleichzeitig durchlaufen.
- In Python 3 gibt zip() einen Iterator von Tupeln zurück.
- In Python 2 , zip() gibt eine Liste von Tupeln zurück, während itertools.izip() und itertools.izip_longest() Iteratoren dafür bereitstellen Effizienz.
Das obige ist der detaillierte Inhalt vonWie iteriere ich in Python parallel durch zwei Listen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Dreamweaver CS6
Visuelle Webentwicklungstools

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung