


Neuzuordnung von Werten in Pandas-Spalten mithilfe des Wörterbuchs unter Beibehaltung von NaN
Im Zusammenhang mit der Verarbeitung von Datenrahmen ist es häufig erforderlich, Werte in a zu ändern spezifische Spalte basierend auf definierten Zuordnungen. Stellen Sie sich ein Szenario vor, in dem Sie über ein Wörterbuch verfügen, das vordefinierte Wertübersetzungen enthält, z. B. di = {1: „A“, 2: „B“}, und Sie diese Zuordnungen auf eine Pandas-Spalte namens col1 anwenden möchten. Das Ziel besteht darin, die Werte in Spalte 1 entsprechend zu ändern und dabei die NaN-Werte unverändert zu lassen.
Ein äußerst effektiver Ansatz, um diese Transformation zu erreichen, ist die Nutzung der .replace-Methode von Pandas. Diese Methode ermöglicht das Ersetzen bestimmter Werte oder Bereiche durch festgelegte Zielwerte. So können Sie es implementieren:
import pandas as pd import numpy as np # Example DataFrame df = pd.DataFrame({'col2': {0: 'a', 1: 2, 2: np.nan}, 'col1': {0: 'w', 1: 1, 2: 2}}) # Mapping dictionary di = {1: "A", 2: "B"} # Apply value remapping using .replace df.replace({"col1": di}, inplace=True) # Output DataFrame with remapped values while preserving NaN print(df)
In diesem Beispiel verwendet die .replace-Methode ein Wörterbuch als Argument, wobei die Schlüssel die ursprünglichen Werte in Spalte 1 darstellen und die Werte die gewünschten neu zugeordneten Werte darstellen. Indem Sie den Inplace-Parameter auf „True“ setzen, wird der ursprüngliche Datenrahmen direkt geändert, sodass keine Neuzuweisung erforderlich ist.
Alternativ können Sie die folgende Syntax verwenden, wenn Sie die Transformation lieber speziell auf die col1-Serie anwenden möchten:
df["col1"].replace(di, inplace=True)
Dieser Ansatz stellt sicher, dass NaN-Werte unberührt bleiben, da NaN kein Schlüssel im Mapping-Wörterbuch ist.
Das obige ist der detaillierte Inhalt vonWie ordne ich Pandas-Spaltenwerte mithilfe eines Wörterbuchs neu zu und behalte dabei die NaN-Werte bei?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Bei der Verwendung von Pythons Pandas -Bibliothek ist das Kopieren von ganzen Spalten zwischen zwei Datenrahmen mit unterschiedlichen Strukturen ein häufiges Problem. Angenommen, wir haben zwei Daten ...

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

Der Artikel erörtert die Rolle virtueller Umgebungen in Python und konzentriert sich auf die Verwaltung von Projektabhängigkeiten und die Vermeidung von Konflikten. Es beschreibt ihre Erstellung, Aktivierung und Vorteile bei der Verbesserung des Projektmanagements und zur Verringerung der Abhängigkeitsprobleme.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion