suchen
HeimBackend-EntwicklungPython-TutorialWie kann ich Pandas „apply()' verwenden, um eine einzelne DataFrame-Spalte zu ändern?

How Can I Use Pandas `apply()` to Modify a Single DataFrame Column?

Verwenden von apply() zum Ändern einer einzelnen Spalte in Pandas DataFrames

Ähnlich wie beim Ändern eines gesamten DataFrame stellt Pandas die Funktion apply() bereit um bestimmte Spalten zu manipulieren, ohne andere zu beeinflussen. Diese Technik ist besonders nützlich, um eine bestimmte Spalte zu transformieren und gleichzeitig die Integrität des verbleibenden DataFrame zu bewahren.

Betrachten wir einen Beispiel-DataFrame, df, der mehrere Spalten enthält:

   a  b
0  1  2
1  2  3
2  3  4
3  4  5

Um nur die zu ändern Werte in der ersten Spalte, 'a', mit apply():

df['a'] = df['a'].apply(lambda x: x + 1)

In diesem Beispiel fügt die Lambda-Funktion 1 zu jedem Element in hinzu die Spalte „a“. Das Ergebnis:

   a  b
0  2  2
1  3  3
2  4  4
3  5  5

Apply() demonstriert seine Flexibilität und ermöglicht es Ihnen, verschiedene Operationen an einer bestimmten Spalte auszuführen, wie zum Beispiel:

  • Datentypen ändern: df['name '] = df['name'].apply(str)
  • Spalte umbenennen: df.rename(columns={'old_name': 'new_name'}, inplace=True)
  • Mehrere Operationen kombinieren: df['total_score'] = df[['score1', 'score2']]. apply(lambda x: x.mean())

Das obige ist der detaillierte Inhalt vonWie kann ich Pandas „apply()' verwenden, um eine einzelne DataFrame-Spalte zu ändern?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Warum sind Arrays im Allgemeinen speichereffizienter als Listen für das Speichern numerischer Daten?Warum sind Arrays im Allgemeinen speichereffizienter als Listen für das Speichern numerischer Daten?May 05, 2025 am 12:15 AM

ARRAYSAREGENERARYMOREMORY-effizientesThanlistsforstoringNumericalDataduetototototheirfixed-SizenReanddirectMemoryAccess.1) ArraysStoreElementsInacontuTouNDdirectMemoryAccess.

Wie können Sie eine Python -Liste in ein Python -Array konvertieren?Wie können Sie eine Python -Liste in ein Python -Array konvertieren?May 05, 2025 am 12:10 AM

ToconvertapythonListtoanArray, UsethearrayModule: 1) ImportThearrayModule, 2) Kreatelist, 3) Usearray (Typcode, Liste) Toconvertit, spezifizieren thetypecodelik'i'i'i'i'i'i'i'i'Itingers.ThiskonversionoptimizesMorySageForHomoGeenousData, EnhancingIntationSerance -Formance -FormanceConconcompomp

Können Sie verschiedene Datentypen in derselben Python -Liste speichern? Geben Sie ein Beispiel an.Können Sie verschiedene Datentypen in derselben Python -Liste speichern? Geben Sie ein Beispiel an.May 05, 2025 am 12:10 AM

Python -Listen können verschiedene Arten von Daten speichern. Die Beispielliste enthält Ganzzahlen, Saiten, schwimmende Punktzahlen, Boolesche, verschachtelte Listen und Wörterbücher. Die Listenflexibilität ist bei der Datenverarbeitung und -prototypung wertvoll, muss jedoch mit Vorsicht verwendet werden, um die Lesbarkeit und Wartbarkeit des Codes sicherzustellen.

Was ist der Unterschied zwischen Arrays und Listen in Python?Was ist der Unterschied zwischen Arrays und Listen in Python?May 05, 2025 am 12:06 AM

Pythondoesnothavebuilt-In-In-In-In-Grad; UsethearraymoduleformemoryeffizientHomogenousDatastorage, whilelistareversatileformixedDatatypes

Welches Modul wird gewöhnlich verwendet, um Arrays in Python zu erstellen?Welches Modul wird gewöhnlich verwendet, um Arrays in Python zu erstellen?May 05, 2025 am 12:02 AM

ThemostcommonlyusedModuleforcreatreatraysinpythonisnumpy.1) NumpyprovideseffictionToolsforArrayoperationen, IdealfornicericalData.2) ArraysCanbesedusednp.Array () for1dand2dstructures.3) numpyexcelsusingnp.Array () und -Antenoperationen

Wie können Sie Elemente an eine Python -Liste anhängen?Wie können Sie Elemente an eine Python -Liste anhängen?May 04, 2025 am 12:17 AM

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.May 04, 2025 am 12:16 AM

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.May 04, 2025 am 12:11 AM

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

SublimeText3 Mac-Version

SublimeText3 Mac-Version

Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!