suchen
HeimBackend-EntwicklungPython-TutorialSind globale Variablen immer böse? Ein tiefer Einblick in ihre Gefahren und zulässigen Verwendungszwecke

Are Global Variables Always Evil?  A Deep Dive into Their Perils and Permissible Uses

Die Gefahren globaler Variablen: Eine umfassende Analyse

Während sich die Codierungspraktiken rasant weiterentwickeln, ist die uralte Debatte um die Verwendung globaler Variablen in vollem Gange besteht fort. Ihr Potenzial für Codekomplexität und versteckte Abhängigkeiten hat in der Programmiergemeinschaft Bedenken hervorgerufen. Dieser Artikel befasst sich mit den Gründen, warum globale Variablen in Python (und darüber hinaus) weithin als Codierungssünde angesehen werden.

Das Problem verstehen: Globale Variablen vs. globale Konstanten

Erstens ist es wichtig, zwischen globalen Variablen und globalen Konstanten zu unterscheiden. Im Gegensatz zu globalen Variablen, die an jedem Punkt innerhalb eines Programms geändert werden können, bleiben globale Konstanten über ihren gesamten Gültigkeitsbereich hinweg konstant. In Python hilft die Konvention, großgeschriebene Bezeichner für Konstanten zu verwenden, bei deren Unterscheidung.

Eintauchen in die Dämonen globaler Variablen

Das Hauptargument gegen globale Variablen ergibt sich aus ihrer Neigung versteckte Nebenwirkungen einführen, die es schwierig machen, das Verhalten von Funktionen vorherzusagen. Wenn mehrere Funktionen auf dieselbe globale Variable zugreifen und diese bearbeiten können, wird die Verfolgung von Abhängigkeiten zu einer mühsamen Aufgabe, die zu kompliziertem und unverständlichem Code führt. Das Ergebnis ist oft ein Nährboden für Bugs und Spaghetti-Code.

Wenn Global zulässig ist: Das Argument für einen gesunden Zustand

Die Ablehnung globaler Variablen ist jedoch nicht der Fall Absolute. Eine vernünftige Verwendung des globalen Zustands kann akzeptabel sein, selbst in funktionalen Programmierparadigmen. Zu den Gründen für die Zulassung des globalen Status gehören Algorithmusoptimierungen, die Reduzierung der Komplexität, Caching und Memoisierung. Bei der Portierung von Strukturen aus imperativen Codebasen kommt auch die Praktikabilität ins Spiel.

Erleuchtung durch weiteres Studium suchen

Ob Sie ein tieferes Verständnis globaler Variablen anstreben oder den weiteren Bereich von erkunden möchten Nebenwirkungen stehen zahlreiche Hilfsmittel zur Verfügung. Das Einbeziehen funktionaler Programmierprinzipien kann wertvolle Einblicke in die Feinheiten der Zustandsverwaltung liefern.

Empfohlene Lektüre:

  • Global Variables Are Bad – Wiki Wiki Web
  • Warum ist der globale Staat so böse? - Software Engineering Stack Exchange
  • Sind globale Variablen schlecht?
  • Nebenwirkung (Informatik) - Wikipedia
  • Warum werden Nebenwirkungen in der funktionalen Programmierung als böse angesehen? - Software Engineering Stack Exchange
  • Funktionale Programmierung – Wikipedia

Das obige ist der detaillierte Inhalt vonSind globale Variablen immer böse? Ein tiefer Einblick in ihre Gefahren und zulässigen Verwendungszwecke. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Den Unterschied verstehen: für Schleife und während der Schleife in PythonDen Unterschied verstehen: für Schleife und während der Schleife in PythonMay 16, 2025 am 12:17 AM

Thedifferencebetweenaforloopandawhileloopinpythonisthataforloopisusedwhenthennumnofiterationssisknowninadvance, während

Python Loop Control: Für VS während - ein VergleichPython Loop Control: Für VS während - ein VergleichMay 16, 2025 am 12:16 AM

In Python eignen sich für Schleifen für Fälle, in denen die Anzahl der Iterationen bekannt ist, während Schleifen für Fälle geeignet sind, in denen die Anzahl der Iterationen unbekannt ist und mehr Kontrolle erforderlich ist. 1) Für Schleifen eignen sich zum Durchqueren von Sequenzen wie Listen, Zeichenfolgen usw. mit prägnantem und pythonischem Code. 2) Während Schleifen angemessener sind, wenn Sie die Schleife gemäß den Bedingungen steuern oder auf Benutzereingaben warten müssen, müssen Sie jedoch aufmerksam machen, um unendliche Schleifen zu vermeiden. 3) In Bezug auf die Leistung ist die für die Schleife etwas schneller, aber der Unterschied ist normalerweise nicht groß. Durch die Auswahl des richtigen Schleifentyps können Sie die Effizienz und Lesbarkeit Ihres Codes verbessern.

So kombinieren Sie zwei Listen in Python: 5 einfache WegeSo kombinieren Sie zwei Listen in Python: 5 einfache WegeMay 16, 2025 am 12:16 AM

In Python können Listen mit fünf Methoden zusammengeführt werden: 1) Verwenden von Operatoren, die einfach und intuitiv sind, für kleine Listen geeignet sind; 2) Verwenden Sie die Extend () -Methode, um die ursprüngliche Liste direkt zu ändern, die für Listen geeignet sind, die häufig aktualisiert werden müssen. 3) Listenanalyseformeln verwenden, präzise und operativ für Elemente; 4) Verwenden Sie die Funktion iterertools.chain (), um den Speicher effizient zu machen, und für große Datensätze geeignet. 5) Verwenden Sie * Operatoren und Zip () -Funktion, um für Szenen geeignet zu sein, in denen Elemente gepaart werden müssen. Jede Methode hat ihre spezifischen Verwendungen und Vor- und Nachteile, und die Projektanforderungen und die Leistung sollten bei der Auswahl berücksichtigt werden.

Für Schleife vs während der Schleife: Python -Syntax, Anwendungsfälle und BeispieleFür Schleife vs während der Schleife: Python -Syntax, Anwendungsfälle und BeispieleMay 16, 2025 am 12:14 AM

Forloopsusedwhenthenumberofofiterationssisknown, whileleloopsusedUntilaconDitionisMet.1) Forloopsardealforsequenceslikelisten, usingSyntax -Like'forfruitinFruits: Print (Frucht) '. 2) WhileloopsuitableFoRuancnownitationCaperitationCountcounts, z. B., z. B., z

Python -Verkettungsliste von ListenPython -Verkettungsliste von ListenMay 16, 2025 am 12:08 AM

Toconcatenatealistoflistsinpython, usextend, listCompresions, itertools.chain, orrecursivefunctions.1) ExtendMethodisStraightforwardbutverbose.2) LISTCOMPRETRAUSIERUNGEN ITCOMPREDREPENSIONSARECONCISEIDEILGEFORTICEFORGELAGELAGERDATASETEN.

Zusammenführen von Listen in Python: Auswählen der richtigen MethodeZusammenführen von Listen in Python: Auswählen der richtigen MethodeMay 14, 2025 am 12:11 AM

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

Wie verkettet man zwei Listen in Python 3?Wie verkettet man zwei Listen in Python 3?May 14, 2025 am 12:09 AM

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Python Concatenate List SaitenPython Concatenate List SaitenMay 14, 2025 am 12:08 AM

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Nordhold: Fusionssystem, erklärt
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.