suchen
HeimBackend-EntwicklungPython-TutorialWarum sind die Rückgabewerte meiner C-Funktion falsch, wenn sie aus Python mit ctypes aufgerufen werden?

Why Are My C Function's Return Values Incorrect When Called from Python Using ctypes?

Falscher Wert, der von einer C-Funktion zurückgegeben wurde, die über Python mithilfe von Ctypes aufgerufen wurde

Beim Aufrufen einer C-Funktion aus Python mithilfe von Ctypes muss die korrekte Angabe von sichergestellt werden Argument- und Rückgabetypen sind von entscheidender Bedeutung. Andernfalls kann es zu undefiniertem Verhalten und der Rückgabe falscher Werte kommen.

In Ihrem Fall haben Sie eine C-Funktion definiert, die eine Zahl potenziert, aber beim Aufruf aus Python falsche Ergebnisse erzielt. Der Schuldige ist offenbar die falsche Schreibweise des argtypes-Attributs. Der korrigierte Code lautet:

from ctypes import *

so_file = '/Users/.../test.so'
functions = CDLL(so_file)

functions.power.argtypes = [c_float, c_int]  # Correct spelling
functions.power.restype = c_float

print(functions.power(5,3))

Durch die Angabe von argtypes und restype weiß Ctypes, wie zwischen Python- und C-Datentypen konvertiert wird, um ordnungsgemäße Berechnungen und Werteverarbeitung sicherzustellen. Diese Korrektur sollte das Problem beheben und die erwartete Ausgabe zurückgeben.

Auswirkungen auf die Array-Verarbeitung

Wie Sie bereits erwähnt haben, möchten Sie schließlich eine C-Funktion aufrufen, die eine Zwei zurückgibt -dimensionales C-Array. Dies erfordert zusätzliche Überlegungen:

  • C-Arrays und Zeiger: In C sind Arrays im Wesentlichen Zeiger auf das erste Element. In diesem Zusammenhang müssen Sie Zeiger in Python mithilfe des POINTER-Typs von Ctypes verwalten.
  • Datenkonvertierung: Die Konvertierung eines mehrdimensionalen C-Arrays in ein Python-Objekt erfordert sorgfältige Überlegungen zur Speicherverwaltung und Datenlayout.
  • Benutzerdefinierte Datenstrukturen: Möglicherweise müssen Sie benutzerdefinierte Datenstrukturen definieren, um die Arrays in Python darzustellen, um eine effiziente und bequeme Darstellung zu gewährleisten Handhabung.

Wenn Sie sich sorgfältig mit diesen Aspekten befassen, sollten Sie in der Lage sein, mithilfe von Ctypes erfolgreich C-Funktionen aufzurufen, die zweidimensionale Arrays aus Python zurückgeben.

Das obige ist der detaillierte Inhalt vonWarum sind die Rückgabewerte meiner C-Funktion falsch, wenn sie aus Python mit ctypes aufgerufen werden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?May 03, 2025 am 12:11 AM

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.May 03, 2025 am 12:10 AM

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Wie geben Sie den Datentyp der Elemente in einem Python -Array an?Wie geben Sie den Datentyp der Elemente in einem Python -Array an?May 03, 2025 am 12:06 AM

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

Was ist Numpy und warum ist es wichtig für das numerische Computing in Python?Was ist Numpy und warum ist es wichtig für das numerische Computing in Python?May 03, 2025 am 12:03 AM

NumpyisessentialfornumericalComputingInpythonduetoitsSpeed, GedächtnisEffizienz und kompetentiertemaMatematical-Funktionen.1) ITSFACTBECAUSPERFORMATIONSOPERATIONS.2) NumpyarraysSaremoremory-Effecthonpythonlists.3) iTofferSAgyarraysAremoremory-Effizieren

Diskutieren Sie das Konzept der 'zusammenhängenden Speicherzuweisung' und seine Bedeutung für Arrays.Diskutieren Sie das Konzept der 'zusammenhängenden Speicherzuweisung' und seine Bedeutung für Arrays.May 03, 2025 am 12:01 AM

ContInuuousMemoryAllocationScrucialforAraysBecauseAltoLowsFofficy und Fastelement Access.1) iTenablesconstantTimeAccess, O (1), Duetodirectaddresscalculation.2) itimProvesefficienceByallowing -MultipleTeLementFetchesperCacheline.3) Es wird gestellt

Wie schneiden Sie eine Python -Liste?Wie schneiden Sie eine Python -Liste?May 02, 2025 am 12:14 AM

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Was sind einige gängige Operationen, die an Numpy -Arrays ausgeführt werden können?Was sind einige gängige Operationen, die an Numpy -Arrays ausgeführt werden können?May 02, 2025 am 12:09 AM

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Wie werden Arrays in der Datenanalyse mit Python verwendet?Wie werden Arrays in der Datenanalyse mit Python verwendet?May 02, 2025 am 12:09 AM

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.