


Im vorherigen Beitrag haben wir die Grundlagen der Arbeit mit RGB-Bildern in OpenCV untersucht, einschließlich des Plottens und Anpassens von Helligkeit und Kontrast. Während der RGB-Farbraum ideal für Computerdisplays ist, da er Farben anhand der von Bildschirmen ausgestrahlten Lichtintensität darstellt, stimmt er nicht mit der Art und Weise überein, wie Menschen Farben in der natürlichen Welt wahrnehmen. Hier kommt HSV (Hue, Saturation, Value) ins Spiel – ein Farbraum, der Farben auf eine Art und Weise darstellen soll, die der menschlichen Wahrnehmung näher kommt.
In diesem Beitrag tauchen wir in HSV ein, verstehen seine Komponenten, erkunden seine Anwendungen und lernen einige coole Tricks zum Verbessern von Bildern.
Was ist HSV?
HSV steht für Farbton, Sättigung und Wert:
- Farbton (H): Dies bezieht sich auf die Art der Farbe – Rot, Grün, Blau usw. Während der Farbton traditionell in Grad auf einem kreisförmigen Spektrum (0°–360°) gemessen wird, wird er in OpenCV auf 0 skaliert –179, um in eine 8-Bit-Ganzzahl zu passen. Hier ist die Zuordnung:
- 0 (oder nahe daran) steht immer noch für Rot.
- 60–89 entspricht Grün.
- 120–149 entspricht Blau.
- 140–179 wird wieder rot und vervollständigt das kreisförmige Spektrum.
Sättigung (S): Dies definiert die Intensität oder Reinheit einer Farbe: Eine vollständig gesättigte Farbe enthält kein Grau und ist lebendig. Eine weniger gesättigte Farbe erscheint verwaschener.
Wert (V): Wird oft als Helligkeit bezeichnet und misst die Helligkeit oder Dunkelheit von. Durch die Trennung dieser Komponenten erleichtert HSV die Analyse und Bearbeitung von Bildern, insbesondere für Aufgaben wie Farberkennung oder -verbesserung. die Farbe.
Um dies besser zu verstehen, ist der Plot Blow eine gute Darstellung der Werte im Farbraum
Konvertieren eines Bildes in HSV in OpenCV
Das Konvertieren eines Bilds in HSV in OpenCV ist mit der Funktion cv2.cvtColor() ganz einfach. Werfen wir einen Blick darauf:
import cv2 import matplotlib.pyplot as plt image = cv2.imread('./test.png') plt.figure(figsize=(10,10)) plt.subplot(1,2,1) plt.imshow(image[:,:,::-1]) #plot as RGB plt.title("RGB View") hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV) plt.subplot(1,2,2) plt.imshow(hsv) plt.title("HSV View") plt.tight_layout() plt.show()
Auf den ersten Blick könnte die HSV-Handlung seltsam wirken – fast schon fremdartig. Das liegt daran, dass Ihr Computer versucht, HSV als RGB-Bild darzustellen, obwohl die Komponenten von HSV (insbesondere Farbton) nicht direkt RGB-Werten zugeordnet sind. Zum Beispiel:
- Farbton (H): Wird als Winkel dargestellt und reicht in OpenCV von 0 bis 179 (nicht 0 bis 255 wie RGB-Kanäle). Dies führt dazu, dass der Farbtonkanal in RGB-basierten Diagrammen überwiegend blau erscheint.
Für die nächsten folgenden Beispiele verwenden wir nicht das Profilbild, sondern ein dunkleres Bild, das mit dem Flux AI Image Gen-Modell generiert wurde. da es einen besseren Benutzerfall von HSV bietet als das Profilbild, da wir seine Wirkung besser sehen können
HSV anhand von Histogrammen verstehen
Um die Unterschiede zwischen RGB und HSV besser zu verstehen, zeichnen wir Histogramme für jeden Kanal. Hier ist der Code:
import cv2 import matplotlib.pyplot as plt image = cv2.imread('./test.png') plt.figure(figsize=(10,10)) plt.subplot(1,2,1) plt.imshow(image[:,:,::-1]) #plot as RGB plt.title("RGB View") hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV) plt.subplot(1,2,2) plt.imshow(hsv) plt.title("HSV View") plt.tight_layout() plt.show()
Anhand der Histogramme können Sie sehen, wie sich die HSV-Kanäle von RGB unterscheiden. Beachten Sie den Farbtonkanal in HSV, der Werte zwischen 0 und 179 hat, die unterschiedliche Farbbereiche darstellen, während Sättigung und Wert Intensität und Helligkeit verwalten.
Visualisierung von Farbton, Sättigung und Wert
Lassen Sie uns nun das HSV-Image in seine einzelnen Komponenten zerlegen, um besser zu verstehen, was jeder Kanal darstellt:
# Plot the histograms plt.figure(figsize=(10, 6)) # RGB Histogram plt.subplot(1, 2, 1) for i, color in enumerate(['r', 'g', 'b']): plt.hist(image[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step') plt.xlim([0, 256]) plt.title("RGB Histogram") # HSV Histogram plt.subplot(1, 2, 2) for i, color in enumerate(['r', 'g', 'b']): plt.hist(hsv[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step') plt.xlim([0, 256]) plt.title("HSV Histogram") plt.show()
- Farbton: Zeigt klare Farbunterscheidungen an und hebt die dominanten Farben im Bild hervor.
- Sättigung: Hellere Bereiche stehen für lebendige Farben, während dunklere Bereiche für gedämpftere Grautöne stehen.
- Wert: Hebt die Helligkeitsverteilung hervor, wobei gut beleuchtete Bereiche heller erscheinen.
Tricks mit dem HSV
1. Helligkeitsverbesserung (Wertausgleich)
Bei Bildern mit ungleichmäßiger Beleuchtung kann der Ausgleich des Value-Kanals dazu führen, dass dunklere Bereiche besser sichtbar werden, während hellere Bereiche einen „Leuchteffekt“ erhalten.
# Plot the individual HSV channels plt.figure(figsize=(10, 6)) plt.subplot(1, 3, 1) plt.imshow(hsv[:, :, 0], cmap='hsv') # Hue plt.title("Hue") plt.subplot(1, 3, 2) plt.imshow(hsv[:, :, 1], cmap='gray') # Saturation plt.title("Saturation") plt.subplot(1, 3, 3) plt.imshow(hsv[:, :, 2], cmap='gray') # Value plt.title("Value") plt.tight_layout() plt.show()
2. Farbverbesserung (Sättigungsausgleich)
Durch die Verstärkung des Sättigungskanals werden die Farben im Bild deutlicher und lebendiger.
equ = cv2.equalizeHist(hsv[:, :, 2]) # Equalize the Value channel new_hsv = cv2.merge((hsv[:, :, 0], hsv[:, :, 1], equ)) new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR) # Display results plt.figure(figsize=(10, 6)) plt.subplot(1, 2, 1) plt.imshow(image) plt.title("Original Image") plt.subplot(1, 2, 2) plt.imshow(new_image) plt.title("Brightness Enhanced") plt.tight_layout() plt.show()
3. Farbfilterung (Rot isolieren)
Mithilfe des Hue-Kanals können wir bestimmte Farben isolieren. Um beispielsweise Rottöne zu extrahieren:
equ = cv2.equalizeHist(hsv[:, :, 1]) # Equalize the Saturation channel new_hsv = cv2.merge((hsv[:, :, 0], equ, hsv[:, :, 2])) new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR) # Display results plt.figure(figsize=(10, 6)) plt.subplot(1, 2, 1) plt.imshow(image) plt.title("Original Image") plt.subplot(1, 2, 2) plt.imshow(new_image) plt.title("Color Enhanced") plt.tight_layout() plt.show()
Diese Technik ist unglaublich nützlich für Aufgaben wie Objekterkennung, Farbsegmentierung oder sogar künstlerische Effekte.
Abschluss
Der HSV-Farbraum bietet eine vielseitige und intuitive Möglichkeit, Bilder zu analysieren und zu bearbeiten. Durch die Trennung von Farbe (Farbton), Intensität (Sättigung) und Helligkeit (Wert) vereinfacht HSV Aufgaben wie Farbfilterung, -verbesserung und -segmentierung. Während RGB ideal für Displays ist, eröffnet HSV Möglichkeiten für die kreative und analytische Bildverarbeitung.
Was ist dein Lieblingstrick beim HSV? Teilen Sie unten Ihre Gedanken mit und lassen Sie uns gemeinsam diese lebendige Welt der Farben erkunden!
Diese Version verfügt über einen reibungslosen Ablauf, detaillierte Erklärungen und eine konsistente Formatierung, um die Lesbarkeit und das Verständnis zu verbessern.
Das obige ist der detaillierte Inhalt von[CVHSV vs. RGB: HSV für die Bildverarbeitung verstehen und nutzen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python und C haben jeweils ihre eigenen Vorteile, und die Wahl sollte auf Projektanforderungen beruhen. 1) Python ist aufgrund seiner prägnanten Syntax und der dynamischen Typisierung für die schnelle Entwicklung und Datenverarbeitung geeignet. 2) C ist aufgrund seiner statischen Tipp- und manuellen Speicherverwaltung für hohe Leistung und Systemprogrammierung geeignet.

Die Auswahl von Python oder C hängt von den Projektanforderungen ab: 1) Wenn Sie eine schnelle Entwicklung, Datenverarbeitung und Prototypdesign benötigen, wählen Sie Python. 2) Wenn Sie eine hohe Leistung, eine geringe Latenz und eine schließende Hardwarekontrolle benötigen, wählen Sie C.

Indem Sie täglich 2 Stunden Python -Lernen investieren, können Sie Ihre Programmierkenntnisse effektiv verbessern. 1. Lernen Sie neues Wissen: Lesen Sie Dokumente oder sehen Sie sich Tutorials an. 2. Üben: Schreiben Sie Code und vollständige Übungen. 3. Überprüfung: Konsolidieren Sie den Inhalt, den Sie gelernt haben. 4. Projektpraxis: Wenden Sie an, was Sie in den tatsächlichen Projekten gelernt haben. Ein solcher strukturierter Lernplan kann Ihnen helfen, Python systematisch zu meistern und Karriereziele zu erreichen.

Zu den Methoden zum effizienten Erlernen von Python innerhalb von zwei Stunden gehören: 1. Überprüfen Sie das Grundkenntnis und stellen Sie sicher, dass Sie mit der Python -Installation und der grundlegenden Syntax vertraut sind. 2. Verstehen Sie die Kernkonzepte von Python wie Variablen, Listen, Funktionen usw.; 3.. Master Basic und Advanced Nutzung unter Verwendung von Beispielen; 4.. Lernen Sie gemeinsame Fehler und Debugging -Techniken; 5. Wenden Sie Leistungsoptimierung und Best Practices an, z. B. die Verwendung von Listenfunktionen und dem Befolgen des Pep8 -Stilhandbuchs.

Python ist für Anfänger und Datenwissenschaften geeignet und C für Systemprogramme und Spieleentwicklung geeignet. 1. Python ist einfach und einfach zu bedienen, geeignet für Datenwissenschaft und Webentwicklung. 2.C bietet eine hohe Leistung und Kontrolle, geeignet für Spieleentwicklung und Systemprogrammierung. Die Wahl sollte auf Projektbedürfnissen und persönlichen Interessen beruhen.

Python eignet sich besser für Datenwissenschaft und schnelle Entwicklung, während C besser für Hochleistungen und Systemprogramme geeignet ist. 1. Python -Syntax ist prägnant und leicht zu lernen, geeignet für die Datenverarbeitung und wissenschaftliches Computer. 2.C hat eine komplexe Syntax, aber eine hervorragende Leistung und wird häufig in der Spieleentwicklung und der Systemprogrammierung verwendet.

Es ist machbar, zwei Stunden am Tag zu investieren, um Python zu lernen. 1. Lernen Sie neues Wissen: Lernen Sie in einer Stunde neue Konzepte wie Listen und Wörterbücher. 2. Praxis und Übung: Verwenden Sie eine Stunde, um Programmierübungen durchzuführen, z. B. kleine Programme. Durch vernünftige Planung und Ausdauer können Sie die Kernkonzepte von Python in kurzer Zeit beherrschen.

Python ist leichter zu lernen und zu verwenden, während C leistungsfähiger, aber komplexer ist. 1. Python -Syntax ist prägnant und für Anfänger geeignet. Durch die dynamische Tippen und die automatische Speicherverwaltung können Sie die Verwendung einfach zu verwenden, kann jedoch zur Laufzeitfehler führen. 2.C bietet Steuerung und erweiterte Funktionen auf niedrigem Niveau, geeignet für Hochleistungsanwendungen, hat jedoch einen hohen Lernschwellenwert und erfordert manuellem Speicher und Typensicherheitsmanagement.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)