suchen
HeimBackend-EntwicklungPython-TutorialWie kann man mit Matplotlib effektiv mehrere Nebenhandlungen erstellen?

How to Effectively Create Multiple Subplots Using Matplotlib?

Plots in mehreren Unterplots mit Matplotlib

Das Verständnis der Funktionalität von Unterplots ist entscheidend, wenn Sie mit mehreren Plots in Matplotlib arbeiten. Lassen Sie uns untersuchen, wie es funktioniert:

Die Subplots-Methode erstellt eine Figur, die mehrere Subplots enthalten kann. Es werden zwei Objekte zurückgegeben: fig, das die Figur darstellt, und axis, ein 2D-Array, das die einzelnen Unterhandlungsachsen enthält.

Zum Beispiel:

fig, axes = plt.subplots(nrows=2, ncols=2)
plt.show()

Dieser Code generiert eine Figur mit vier in einem 2x2-Raster angeordnete Nebenhandlungen. Das Achsen-Array speichert Verweise auf die Achsen jeder Nebenhandlung.

Entgegen der landläufigen Meinung werden durch das Erstellen weiterer Nebenhandlungen keine zusätzlichen Figuren erstellt. Stattdessen wird die vorhandene Figur in kleinere Unterhandlungen unterteilt.

Während die Unterhandlungsmethode effizient ist, können Sie eine Figur auch manuell erstellen und Unterhandlungen explizit angeben. Allerdings ist diese Methode nicht so prägnant wie die Verwendung von Unterplots:

fig = plt.figure()
axes = fig.subplots(nrows=2, ncols=2)

Dieser Code erstellt eine Figur und ein Array von Achsen, zeichnet jedoch nicht automatisch etwas auf. Um die Diagramme anzuzeigen, müssen Sie manuell Daten zu jedem Unterdiagramm hinzufügen.

Das obige ist der detaillierte Inhalt vonWie kann man mit Matplotlib effektiv mehrere Nebenhandlungen erstellen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal?Wie löste ich das Problem der Berechtigungen beim Betrachten der Python -Version in Linux Terminal?Apr 01, 2025 pm 05:09 PM

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Mar 10, 2025 pm 06:54 PM

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python -Objekten: Teil 1Serialisierung und Deserialisierung von Python -Objekten: Teil 1Mar 08, 2025 am 09:39 AM

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Mathematische Module in Python: StatistikMathematische Module in Python: StatistikMar 09, 2025 am 11:40 AM

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Mar 10, 2025 pm 06:52 PM

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Schaberwebseiten in Python mit wunderschöner Suppe: Suche und DOM -ModifikationSchaberwebseiten in Python mit wunderschöner Suppe: Suche und DOM -ModifikationMar 08, 2025 am 10:36 AM

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

Wie erstelle ich Befehlszeilenschnittstellen (CLIS) mit Python?Wie erstelle ich Befehlszeilenschnittstellen (CLIS) mit Python?Mar 10, 2025 pm 06:48 PM

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.

Was sind einige beliebte Python -Bibliotheken und ihre Verwendung?Was sind einige beliebte Python -Bibliotheken und ihre Verwendung?Mar 21, 2025 pm 06:46 PM

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

VSCode Windows 64-Bit-Download

VSCode Windows 64-Bit-Download

Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.