suchen
HeimBackend-EntwicklungPython-TutorialWie kann ich die letzten N Zeilen einer Datei in Python effizient abrufen (mit Offset-Unterstützung)?

How Can I Efficiently Retrieve the Last N Lines of a File in Python (with Offset Support)?

Die letzten N Zeilen einer Datei abrufen, ähnlich wie bei Tail

Einführung

Die Analyse von Protokolldateien erfordert häufig die Fähigkeit dazu die neuesten Einträge anzeigen. Dies wird normalerweise mit dem Befehl „tail“ erreicht, der die letzten n Zeilen einer Datei abruft. In diesem Artikel untersuchen wir eine Implementierung einer Python-Methode, die den tail-Befehl mit Unterstützung für Offsets emuliert.

Tail-Implementierung

Die vorgeschlagene tail()-Methode funktioniert wie folgt:

  1. Es liest n Zeilen vom Ende der Datei.
  2. Es stellt einen Offset bereit Parameter, um eine bestimmte Anzahl von Zeilen von unten zu überspringen.
def tail(f, n, offset=0):
    """Reads a n lines from f with an offset of offset lines."""
    avg_line_length = 74
    to_read = n + offset
    while 1:
        try:
            f.seek(-(avg_line_length * to_read), 2)
        except IOError:
            f.seek(0)
        pos = f.tell()
        lines = f.read().splitlines()
        if len(lines) >= to_read or pos == 0:
            return lines[-to_read:offset and -offset or None]
        avg_line_length *= 1.3

Diese Methode schätzt die durchschnittliche Zeilenlänge und passt sie dynamisch an, um die Leistung zu optimieren.

Alternativer Ansatz

Die ursprüngliche Implementierung geht von Annahmen über die Zeilenlänge aus, die möglicherweise nicht immer zutreffen. Hier ist ein alternativer Ansatz, der solche Annahmen vermeidet:

def tail(f, lines=20):
    total_lines_wanted = lines

    BLOCK_SIZE = 1024
    f.seek(0, 2)
    block_end_byte = f.tell()
    lines_to_go = total_lines_wanted
    block_number = -1
    blocks = [] 
    while lines_to_go > 0 and block_end_byte > 0:
        if (block_end_byte - BLOCK_SIZE > 0):
            f.seek(block_number*BLOCK_SIZE, 2)
            blocks.append(f.read(BLOCK_SIZE))
        else:
            f.seek(0,0)
            blocks.append(f.read(block_end_byte))
        lines_found = blocks[-1].count('\n')
        lines_to_go -= lines_found
        block_end_byte -= BLOCK_SIZE
        block_number -= 1
    all_read_text = ''.join(reversed(blocks))
    return '\n'.join(all_read_text.splitlines()[-total_lines_wanted:])

Diese Methode durchsucht die Datei Block für Block rückwärts und zählt dabei Zeilenumbrüche, um die gewünschten Zeilen zu finden.

Fazit

Beide Methoden bieten praktikable Lösungen zum Abrufen der letzten n Zeilen einer Datei mit Offset-Unterstützung. Der alternative Ansatz vermeidet Annahmen über die Zeilenlänge und könnte für große Dateien effizienter sein.

Das obige ist der detaillierte Inhalt vonWie kann ich die letzten N Zeilen einer Datei in Python effizient abrufen (mit Offset-Unterstützung)?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Was sind einige gängige Operationen, die an Python -Arrays ausgeführt werden können?Was sind einige gängige Operationen, die an Python -Arrays ausgeführt werden können?Apr 26, 2025 am 12:22 AM

PythonarraysSupportvariousoperationen: 1) SlicicingExtractsSubsets, 2) Anhang/Erweiterungen, 3) Einfügen von PlaceSelementsatspezifischePositionen, 4) Entfernen von Delettel, 5) Sortieren/ReversingChangesorder und 6) compredewlistenwlists basierte basierte, basierte Zonexistin

In welchen Anwendungsarten werden häufig Numpy -Arrays verwendet?In welchen Anwendungsarten werden häufig Numpy -Arrays verwendet?Apr 26, 2025 am 12:13 AM

NumpyarraysaresessentialForApplicationsRequeeFoughnumericalComputations und Datamanipulation

Wann würden Sie ein Array über eine Liste in Python verwenden?Wann würden Sie ein Array über eine Liste in Python verwenden?Apr 26, 2025 am 12:12 AM

UseanArray.ArrayoveralistinpythonwhendealingwithhomogenousData, Performance-CriticalCode, OrInterfacingwithCcode.1) HomogenousData: ArraysSavemoryWithtypedElements.2) Performance-CriticalCode: ArraySaveMoryWithtypedElements.2) Performance-CriticalCode: ArraysFerbetterPerPterPerProrMtorChorescomeChormericalcoricalomancomeChormericalicalomentorMentumscritorcorements.3) Interf

Werden alle Listenoperationen von Arrays unterstützt und umgekehrt? Warum oder warum nicht?Werden alle Listenoperationen von Arrays unterstützt und umgekehrt? Warum oder warum nicht?Apr 26, 2025 am 12:05 AM

Nein, NOTALLLISTOPERATIONSARESURDEDBYARAYS UNDVICEVERSA.1) ArraysDonotsupportdynamicoperationslikeAppendorinStResizing, die impactSperformance.2) listsDonotguaranteConstantTimeComplexityfordirectAccesslikearraysDo.

Wie können Sie in einer Python -Liste auf Elemente zugreifen?Wie können Sie in einer Python -Liste auf Elemente zugreifen?Apr 26, 2025 am 12:03 AM

ToaccesselementSinapythonlist, verwenden Indexing, Negativindexing, Slicing, Oriteration.1) IndexingStartsat0.2) NegativeIndexingAccessses aus der THEend.3) SlicingExtractSporions.4) itererationSforloopsorenumerate.AlwaySChEckLegthtoavoidIndexerror.

Wie werden Arrays im wissenschaftlichen Computer mit Python verwendet?Wie werden Arrays im wissenschaftlichen Computer mit Python verwendet?Apr 25, 2025 am 12:28 AM

Arraysinpython, besondersvianumpy, arecrucialInScientificComputingFortheirefficience undvertilität.1) Sie haben festgelegt, dass die Fornerikerne, Datenanalyse und Machinelarning.2) Numpy'SimplementationIncensuresFasteroperationsdanpythonlisten.3) Araysensableableableableableableableableableableableableableableableableableableableableableableableableableable

Wie gehen Sie mit verschiedenen Python -Versionen im selben System um?Wie gehen Sie mit verschiedenen Python -Versionen im selben System um?Apr 25, 2025 am 12:24 AM

Sie können verschiedene Python -Versionen mithilfe von Pyenv, Venv und Anaconda verwalten. 1) Verwalten Sie PYENV, um mehrere Python -Versionen zu verwalten: Installieren Sie PyEnv, setzen Sie globale und lokale Versionen. 2) Verwenden Sie VenV, um eine virtuelle Umgebung zu erstellen, um Projektabhängigkeiten zu isolieren. 3) Verwenden Sie Anaconda, um Python -Versionen in Ihrem Datenwissenschaftsprojekt zu verwalten. 4) Halten Sie das System Python für Aufgaben auf Systemebene. Durch diese Tools und Strategien können Sie verschiedene Versionen von Python effektiv verwalten, um den reibungslosen Betrieb des Projekts zu gewährleisten.

Was sind einige Vorteile bei der Verwendung von Numpy -Arrays gegenüber Standard -Python -Arrays?Was sind einige Vorteile bei der Verwendung von Numpy -Arrays gegenüber Standard -Python -Arrays?Apr 25, 2025 am 12:21 AM

NumpyarrayShaveseveraladVantagesOverStandardPythonArrays: 1) SiearemuchfasterDuetoc-basiert, 2) sie istaremoremory-effizient, insbesondere mit mit LaShlargedatasets und 3) sie können sich mit vektorisierten Funktionsformathematical und Statistical opertical opertical opertical operticaloperation, Making

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SAP NetWeaver Server-Adapter für Eclipse

SAP NetWeaver Server-Adapter für Eclipse

Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

MantisBT

MantisBT

Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool