Zugriff auf Rückgabewerte von Threads
Wenn Threads in Python erstellt werden, kann ihre Zielfunktion einen Wert zurückgeben. Das Abrufen dieses Rückgabewerts vom Hauptthread ist jedoch mit Standardmethoden nicht einfach.
Eine Möglichkeit besteht darin, ein veränderbares Objekt, z. B. eine Liste oder ein Wörterbuch, an den Thread zu übergeben und das Ergebnis in einem dafür vorgesehenen Slot zu speichern . Diese Methode erfordert die Übergabe zusätzlicher Argumente an den Thread und die Aufrechterhaltung der Verbindung zwischen dem Thread und dem Objekt.
Ein anderer Ansatz besteht darin, die Thread-Klasse in Unterklassen zu unterteilen und die Ausführungs- und Join-Methoden zu überschreiben. Bei der überschriebenen Ausführungsmethode wird der Rückgabewert der Zielfunktion in einem privaten Attribut innerhalb der Unterklasse gespeichert. Die überschriebene Join-Methode gibt den in diesem Attribut gespeicherten Wert zurück.
Hier ist ein Beispiel mit der ThreadWithReturnValue-Unterklasse:
class ThreadWithReturnValue(Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs={}, Verbose=None): Thread.__init__(self, group, target, name, args, kwargs) self._return = None def run(self): if self._target is not None: self._return = self._target(*self._args, **self._kwargs) def join(self, *args): Thread.join(self, *args) return self._return
So verwenden Sie diese Unterklasse:
twrv = ThreadWithReturnValue(target=foo, args=('world!',)) twrv.start() print(twrv.join()) # prints 'foo'
While Diese Methode ist effektiv, sie erfordert jedoch eine Anpassung der Thread-Klasse, was möglicherweise nicht in allen Szenarien wünschenswert ist. Letztendlich hängt der beste Ansatz von den spezifischen Bedürfnissen und Anforderungen der Anwendung ab.
Das obige ist der detaillierte Inhalt vonWie kann ich Rückgabewerte von Python-Threads abrufen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;

PythonlistsarebetterTterThanarraysFormAnagingDiversedatatypes.1) ListScanholdElements ofdifferenttypes, 2) siearedynamic, erlauben EasyDitionSsandremovals, 3) sie antelluitive Operationenslikesklikationen, Buth), sie ohne Ereignis-effosidentandslowentlaunenfeuer.

ToaccesselementSinapythonarray, useIndexing: my_array [2] AccessaThThirtelement, returning3.pythonuseszero-basiertindexing.1) usepositiveAndnegativeIndexing: my_list [0] fORGHEFIRSTELEMENT, MY_LIST [-1] Forthelast.2) VerwendungsforArange: my_list [1: 5] extractsselemen

In Artikel wird die Unmöglichkeit des Tupelverständnisses in Python aufgrund von Syntax -Mehrdeutigkeiten erörtert. Alternativen wie die Verwendung von Tuple () mit Generatorausdrücken werden vorgeschlagen, um Tupel effizient zu erstellen (159 Zeichen)

Der Artikel erläutert Module und Pakete in Python, deren Unterschiede und Verwendung. Module sind einzelne Dateien, während Pakete Verzeichnisse mit einer __init__.py -Datei sind, die verwandte Module hierarchisch organisieren.

In Artikel werden Docstrings in Python, deren Nutzung und Vorteile erörtert. Hauptproblem: Bedeutung von DocStrings für die Code -Dokumentation und -zugriffsfunktion.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

Dreamweaver Mac
Visuelle Webentwicklungstools

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.
