


Erstellen intelligenter LLM-Anwendungen mit bedingten Ketten – ein tiefer Einblick
TL;DR
- Beherrschen Sie dynamische Routing-Strategien in LLM-Anwendungen
- Implementieren Sie robuste Fehlerbehandlungsmechanismen
- Bauen Sie ein praktisches mehrsprachiges Inhaltsverarbeitungssystem auf
- Lernen Sie Best Practices für Abbaustrategien kennen
Dynamisches Routing verstehen
In komplexen LLM-Anwendungen erfordern unterschiedliche Eingaben oft unterschiedliche Verarbeitungspfade. Dynamisches Routing hilft:
- Ressourcennutzung optimieren
- Antwortgenauigkeit verbessern
- Verbesserung der Systemzuverlässigkeit
- Bearbeitungskosten kontrollieren
Routing-Strategie-Design
1. Kernkomponenten
from langchain.chains import LLMChain from langchain.prompts import ChatPromptTemplate from langchain.output_parsers import PydanticOutputParser from pydantic import BaseModel, Field from typing import Optional, List import asyncio class RouteDecision(BaseModel): route: str = Field(description="The selected processing route") confidence: float = Field(description="Confidence score of the decision") reasoning: str = Field(description="Explanation for the routing decision") class IntelligentRouter: def __init__(self, routes: List[str]): self.routes = routes self.parser = PydanticOutputParser(pydantic_object=RouteDecision) self.route_prompt = ChatPromptTemplate.from_template( """Analyze the following input and decide the best processing route. Available routes: {routes} Input: {input} {format_instructions} """ )
2. Routenauswahllogik
async def decide_route(self, input_text: str) -> RouteDecision: prompt = self.route_prompt.format( routes=self.routes, input=input_text, format_instructions=self.parser.get_format_instructions() ) chain = LLMChain( llm=self.llm, prompt=self.route_prompt ) result = await chain.arun(input=input_text) return self.parser.parse(result)
Praxisbeispiel: Mehrsprachiges Content-System
1. Systemarchitektur
class MultiLangProcessor: def __init__(self): self.router = IntelligentRouter([ "translation", "summarization", "sentiment_analysis", "content_moderation" ]) self.processors = { "translation": TranslationChain(), "summarization": SummaryChain(), "sentiment_analysis": SentimentChain(), "content_moderation": ModerationChain() } async def process(self, content: str) -> Dict: try: route = await self.router.decide_route(content) if route.confidence <h3> 2. Implementierung der Fehlerbehandlung </h3> <pre class="brush:php;toolbar:false">class ErrorHandler: def __init__(self): self.fallback_llm = ChatOpenAI( model_name="gpt-3.5-turbo", temperature=0.3 ) self.retry_limit = 3 self.backoff_factor = 1.5 async def handle_error( self, error: Exception, context: Dict ) -> Dict: error_type = type(error).__name__ if error_type in self.error_strategies: return await self.error_strategies[error_type]( error, context ) return await self.default_error_handler(error, context) async def retry_with_backoff( self, func, *args, **kwargs ): for attempt in range(self.retry_limit): try: return await func(*args, **kwargs) except Exception as e: if attempt == self.retry_limit - 1: raise e await asyncio.sleep( self.backoff_factor ** attempt )
Beispiele für Abbaustrategien
1. Modell-Fallback-Kette
class ModelFallbackChain: def __init__(self): self.models = [ ChatOpenAI(model_name="gpt-4"), ChatOpenAI(model_name="gpt-3.5-turbo"), ChatOpenAI(model_name="gpt-3.5-turbo-16k") ] async def run_with_fallback( self, prompt: str ) -> Optional[str]: for model in self.models: try: return await self.try_model(model, prompt) except Exception as e: continue return await self.final_fallback(prompt)
2. Content Chunking-Strategie
class ChunkingStrategy: def __init__(self, chunk_size: int = 1000): self.chunk_size = chunk_size def chunk_content( self, content: str ) -> List[str]: # Implement smart content chunking return [ content[i:i + self.chunk_size] for i in range(0, len(content), self.chunk_size) ] async def process_chunks( self, chunks: List[str] ) -> List[Dict]: results = [] for chunk in chunks: try: result = await self.process_single_chunk(chunk) results.append(result) except Exception as e: results.append(self.handle_chunk_error(e, chunk)) return results
Best Practices und Empfehlungen
-
Grundsätze zur Routengestaltung
- Halten Sie Routen fokussiert und spezifisch
- Implementieren Sie klare Fallback-Pfade
- Routenleistungsmetriken überwachen
-
Richtlinien zur Fehlerbehandlung
- Abgestufte Fallback-Strategien umsetzen
- Fehler umfassend protokollieren
- Richten Sie Benachrichtigungen für kritische Fehler ein
-
Leistungsoptimierung
- Häufige Routing-Entscheidungen zwischenspeichern
- Implementieren Sie nach Möglichkeit gleichzeitige Verarbeitung
- Routing-Schwellenwerte überwachen und anpassen
Abschluss
Bedingte Ketten sind für den Aufbau robuster LLM-Anwendungen von entscheidender Bedeutung. Wichtige Erkenntnisse:
- Entwerfen Sie klare Routing-Strategien
- Umfassende Fehlerbehandlung implementieren
- Planen Sie Verschlechterungsszenarien
- Leistung überwachen und optimieren
Das obige ist der detaillierte Inhalt vonErstellen intelligenter LLM-Anwendungen mit bedingten Ketten – ein tiefer Einblick. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.

PythonexexecutionStheProcessOfTransformingPythonCodeIntoexexexecleableInstructions.1) ThePythonvirtualmachine (PVM) Ausführungen

Zu den wichtigsten Merkmalen von Python gehören: 1. Die Syntax ist prägnant und leicht zu verstehen, für Anfänger geeignet; 2. Dynamisches Typsystem, Verbesserung der Entwicklungsgeschwindigkeit; 3. Reiche Standardbibliothek, Unterstützung mehrerer Aufgaben; 4. Starke Gemeinschaft und Ökosystem, die umfassende Unterstützung leisten; 5. Interpretation, geeignet für Skript- und Schnellprototypen; 6. Support für Multi-Paradigma, geeignet für verschiedene Programmierstile.

Python ist eine interpretierte Sprache, enthält aber auch den Zusammenstellungsprozess. 1) Python -Code wird zuerst in Bytecode zusammengestellt. 2) Bytecode wird von Python Virtual Machine interpretiert und ausgeführt. 3) Dieser Hybridmechanismus macht Python sowohl flexibel als auch effizient, aber nicht so schnell wie eine vollständig kompilierte Sprache.

UseaforloopwheniteratoverasequenceOrforaPecificNumberoftimes; UseaWhileloopWencontiningUntilAconDitionisMet.ForloopsardealForknown -Sequencies, während whileloopSuituationen mithungeterminediterationen.

PythonloopscanleadtoErors-ähnliche Finanzeloops, ModificingListsDuringiteration, Off-by-Oneerrors, Zero-Indexingissues und Nestroxinefficiens.toavoidthese: 1) Verwenden Sie


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Herunterladen der Mac-Version des Atom-Editors
Der beliebteste Open-Source-Editor

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor
