


Wie kann ich Verzeichnisse und deren übergeordnete Verzeichnisse in Python erstellen?
Verzeichnisse und deren übergeordnete Verzeichnisse mit Python erstellen
Im Bereich der Dateisysteme ist es oft notwendig, Verzeichnisse zu erstellen, und zwar beide im angegebenen Pfad und alle fehlenden übergeordneten Verzeichnisse auf dem Weg. Dies ahmt die Funktionalität des Befehls mkdir -p von Bash nach.
Modernes Python (≥ 3.5):
Pythons Pathlib-Modul bietet eine praktische Möglichkeit, dies zu handhaben:
from pathlib import Path Path("/my/directory").mkdir(parents=True, exist_ok=True)
Älteres Python Versionen:
Verwendung des Betriebssystemmoduls:
import os if not os.path.exists(directory): os.makedirs(directory)
Dieser Ansatz weist eine potenzielle Race-Bedingung auf, wie in den Kommentaren erwähnt. Um dieses Problem zu beheben, können Sie einen zweiten os.path.exists-Aufruf verwenden oder den OSError abfangen und den eingebetteten Fehlercode untersuchen:
import os, errno try: os.makedirs(directory) except OSError as e: if e.errno != errno.EEXIST: raise
Dies birgt jedoch das Risiko, dass andere Fehler übersehen werden.
Verbesserte Python-Versionen:
Python 3.3 führt FileExistsError ein, das vereinfacht die Fehlerbehandlung:
try: os.makedirs("path/to/directory") except FileExistsError: # directory already exists pass
Python 3.2 fügt außerdem das Argument exist_ok zu os.makedirs hinzu:
os.makedirs("path/to/directory", exist_ok=True) # succeeds even if directory exists.
Das obige ist der detaillierte Inhalt vonWie kann ich Verzeichnisse und deren übergeordnete Verzeichnisse in Python erstellen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.

PythonarraysSureScreeatedusedhearrayModule, nicht gebaute Inlikelisten.1) ImportThearrayModule.2) Spezifizieren Sie die THETYPECODE, z.

Zusätzlich zur Shebang -Linie gibt es viele Möglichkeiten, einen Python -Interpreter anzugeben: 1. Verwenden Sie Python -Befehle direkt aus der Befehlszeile; 2. Verwenden Sie Stapeldateien oder Shell -Skripte. 3.. Verwenden Sie Build -Tools wie Make oder CMake; 4. Verwenden Sie Aufgabenläufer wie Invoke. Jede Methode hat ihre Vor- und Nachteile, und es ist wichtig, die Methode auszuwählen, die den Anforderungen des Projekts entspricht.

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Dreamweaver CS6
Visuelle Webentwicklungstools

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

MantisBT
Mantis ist ein einfach zu implementierendes webbasiertes Tool zur Fehlerverfolgung, das die Fehlerverfolgung von Produkten unterstützen soll. Es erfordert PHP, MySQL und einen Webserver. Schauen Sie sich unsere Demo- und Hosting-Services an.
