suchen
HeimBackend-EntwicklungPython-TutorialWie behandelt die Funktion „round()' von Python 3.x das Runden von Werten genau auf halbem Weg zwischen ganzen Zahlen?

How Does Python 3.x's `round()` Function Handle Rounding of Values Exactly Halfway Between Integers?

Pythons aktualisiertes Rundungsverhalten in 3.x

Die Round()-Funktion von Python 3.x hat eine wesentliche Änderung in ihrer Rundungsstrategie erfahren. Bisher wurden Werte genau in der Mitte zwischen ganzen Zahlen (z. B. 2,5) von Null aus gerundet. In Python 3.x werden diese Werte jetzt jedoch auf das nächste gerade Ergebnis gerundet (z. B. Round(2.5) gibt 2 zurück).

Gründe für die Änderung

Diese Änderung wurde in Python 3.0 eingeführt, um das Problem der Verzerrung bei statistischen Berechnungen zu beheben. Wenn Werte von Null weg gerundet werden, kann es bei einer großen Anzahl von Berechnungen zu einer leichten Tendenz zur höheren Zahl kommen. „Halb auf gerade runden“ oder „Banker-Rundung“ eliminiert diese Verzerrung und gewährleistet eine genauere Darstellung des wahren Durchschnitts.

Auswirkungen auf gängige Programmierszenarien

Während die Das aktualisierte Rundungsverhalten mag kontraintuitiv erscheinen, es entspricht jedoch der Standardrundungsmethode, die in verschiedenen Branchen und Anwendungen verwendet wird, darunter Mathematik, Finanzen usw Statistiken.

Andere Programmiersprachen

Python 3.x ist nicht die einzige Programmiersprache, die Banker-Rundung nutzt. Mehrere gängige Sprachen wie Java, C und Perl verwenden diese Rundungsmethode ebenfalls.

Zusätzliche Auswirkungen

Es ist wichtig zu beachten, dass diese Änderung Auswirkungen auf vorhandenen Code haben kann das beruht auf dem bisherigen Rundungsverhalten. Entwickler müssen möglicherweise ihren Code anpassen, um die neue Rundungsstrategie zu berücksichtigen.

Fazit

Das aktualisierte Rundungsverhalten von Python 3.x führt bekanntlich eine genauere und unvoreingenommene Rundungsmethode ein B. „von halb auf gerade runden“ oder „Banker-Rundung“. Dieser Ansatz eliminiert Verzerrungen bei einer großen Anzahl von Berechnungen und richtet sich nach Industriestandards, um konsistente Ergebnisse zu gewährleisten. Auch wenn dafür möglicherweise einige Anpassungen am vorhandenen Code erforderlich sind, verbessert es letztendlich die Zuverlässigkeit und Genauigkeit der Berechnungen.

Das obige ist der detaillierte Inhalt vonWie behandelt die Funktion „round()' von Python 3.x das Runden von Werten genau auf halbem Weg zwischen ganzen Zahlen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie können Sie Elemente an ein Python -Array anhängen?Wie können Sie Elemente an ein Python -Array anhängen?Apr 30, 2025 am 12:19 AM

Inpython, youAppendElementStoAlistusedtheAppend () Methode.1) UseAppend () ForsingleElelements: my_list.append (4) .2) usextend () oder = formulnElements: my_list.extend (andere_list) ormy_list = [4,5,6] .3) useInSert () FORSPECIFIFICISPositionen: my_list.insert (1,5) .Beaware

Wie debuggen Sie Probleme mit dem in SHEBANG verwandten Problem?Wie debuggen Sie Probleme mit dem in SHEBANG verwandten Problem?Apr 30, 2025 am 12:17 AM

Zu den Methoden zum Debuggen des Shebang -Problems gehören: 1.. Überprüfen Sie die SHEBANG -Zeile, um sicherzustellen, dass es sich um die erste Zeile des Skripts handelt, und es gibt keine vorangestellten Räume. 2. Überprüfen Sie, ob der Dolmetscherpfad korrekt ist; 3. Rufen Sie den Dolmetscher direkt an, um das Skript auszuführen, um das Problem der Shebang zu isolieren. 4. Verwenden Sie Strace oder Trusts, um die Systemaufrufe zu verfolgen. 5. Überprüfen Sie die Auswirkungen von Umgebungsvariablen auf Shebang.

Wie entfernen Sie Elemente aus einem Python -Array?Wie entfernen Sie Elemente aus einem Python -Array?Apr 30, 2025 am 12:16 AM

PythonlistscanbemanipuleduseveralmethodstoremoveElements: 1) theremove () methodremoveFirstoccurce -ofaspecifiedValue.2) thepop () methodremovesandreturnsanelementatagivedEx.3) theedelstatementcanremoveMeMeMeMeTex.

Welche Datentypen können in einer Python -Liste gespeichert werden?Welche Datentypen können in einer Python -Liste gespeichert werden?Apr 30, 2025 am 12:07 AM

PythonlistscanstoreanyDatatype, einschließlich Integren, Streicher, Schwimmkörper, Booleans, anderen Listen und Dotionen. ThisverSatilityAllows-Formixed-Typen, die kanbemännische EffectivantivinyusingTypecks, TypenHints und spezialisierte LikenumpyForperformance

Was sind einige gängige Operationen, die auf Python -Listen ausgeführt werden können?Was sind einige gängige Operationen, die auf Python -Listen ausgeführt werden können?Apr 30, 2025 am 12:01 AM

PythonlistsSupportnumousoperationen: 1) AddelementsWithAppend (), Extend (), andInsert (). 2) REMVERGENDEMODESUSUSUSSUMOVER (), POP () und Clear (). 3) Accessing undModifyingWithindexingandSlicing.4) SearchingandSortingWithindEx (), Sorte (), und Sortex ()

Wie erstellen Sie mehrdimensionale Arrays mit Numpy?Wie erstellen Sie mehrdimensionale Arrays mit Numpy?Apr 29, 2025 am 12:27 AM

Durch die folgenden Schritte können mehrdimensionale Arrays mit Numpy erstellt werden: 1) Verwenden Sie die Funktion numpy.array (), um ein Array wie NP.Array ([1,2,3], [4,5,6]) zu erstellen, um ein 2D-Array zu erstellen; 2) Verwenden Sie np.zeros (), np.ones (), np.random.random () und andere Funktionen, um ein Array zu erstellen, das mit spezifischen Werten gefüllt ist; 3) Verstehen Sie die Form- und Größeneigenschaften des Arrays, um sicherzustellen, dass die Länge des Unterarrays konsistent ist und Fehler vermeiden. 4) Verwenden Sie die Funktion np.reshape (), um die Form des Arrays zu ändern. 5) Achten Sie auf die Speichernutzung, um sicherzustellen, dass der Code klar und effizient ist.

Erklären Sie das Konzept des 'Rundfunks' in Numpy -Arrays.Erklären Sie das Konzept des 'Rundfunks' in Numpy -Arrays.Apr 29, 2025 am 12:23 AM

SendeminnumpyissamethodtoperformoperationsonarraysofdifferentShapesByAutomaticaligningTHem.itsimplifiesCode, Verbesserung der Verschiebbarkeit, und BoostSPerformance.her'Showitworks: 1) kleinereArraysArepaddedwithonestOMatchDimens.2) compatibledimens

Erklären Sie, wie Sie zwischen Listen, Array.Array und Numpy -Arrays für die Datenspeicherung auswählen.Erklären Sie, wie Sie zwischen Listen, Array.Array und Numpy -Arrays für die Datenspeicherung auswählen.Apr 29, 2025 am 12:20 AM

Forpythondatastorage, ChooselistsforflexibilitätswithmixedDatatypes, Array.Arrayformemory-effizientesHomogenoususnumericalData und NumpyArraysForAdvancedNumericalComputing.ListsareversAntileffictionForLarGenicalDataSetsetaSets;

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Leistungsstarke integrierte PHP-Entwicklungsumgebung

EditPlus chinesische Crack-Version

EditPlus chinesische Crack-Version

Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

PHPStorm Mac-Version

PHPStorm Mac-Version

Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools