suchen
HeimBackend-EntwicklungPython-TutorialWie identifiziere ich Zeilen, die in einem Pandas-DataFrame vorhanden sind, in einem anderen jedoch fehlen?

How to Identify Rows Present in One Pandas DataFrame but Absent in Another?

Identifizieren unterschiedlicher Zeilen zwischen Datenrahmen

Problemstellung

Gegeben zwei Pandas-Datenrahmen (df1 und df2) mit sich überschneidenden Zeilen, besteht die Aufgabe darin, diese zu isolieren Zeilen in df1, die in fehlen df2.

Lösung

Um dieses Problem zu lösen, können wir einen Links-Join von df1 nach df2 durchführen und dabei sicherstellen, dass wir Duplikate in df2 eliminieren, um sicherzustellen, dass jede Zeile von df1 mit nur einer Zeile verknüpft wird df2.

df_all = df1.merge(df2.drop_duplicates(), on=['col1', 'col2'], how='left', indicator=True)

Dieser Left-Join erstellt eine zusätzliche Spalte _merge, die den Ursprung jeder Spalte angibt Zeile.

Um nach Zeilen zu filtern, die ausschließlich für df1 gelten, wenden wir eine boolesche Bedingung an:

df_filtered = df_all[df_all['_merge'] == 'left_only']

Falsche Lösungen

Einige Lösungen überprüfen fehlerhaft jeden Wert in jeder Spalte unabhängig anstatt die zeilenweise Präsenz zu berücksichtigen. Beispielsweise gibt diese Lösung:

(~df1.col1.isin(common.col1)) & (~df1.col2.isin(common.col2))

ein falsches Ergebnis zurück, da die Zeile mit den Werten [3, 10] nicht erfasst werden kann, was gemeinsam fehlt:

0    False
1    False
2    False
3     True
4     True
5    False
dtype: bool

Das obige ist der detaillierte Inhalt vonWie identifiziere ich Zeilen, die in einem Pandas-DataFrame vorhanden sind, in einem anderen jedoch fehlen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Den Unterschied verstehen: für Schleife und während der Schleife in PythonDen Unterschied verstehen: für Schleife und während der Schleife in PythonMay 16, 2025 am 12:17 AM

Thedifferencebetweenaforloopandawhileloopinpythonisthataforloopisusedwhenthennumnofiterationssisknowninadvance, während

Python Loop Control: Für VS während - ein VergleichPython Loop Control: Für VS während - ein VergleichMay 16, 2025 am 12:16 AM

In Python eignen sich für Schleifen für Fälle, in denen die Anzahl der Iterationen bekannt ist, während Schleifen für Fälle geeignet sind, in denen die Anzahl der Iterationen unbekannt ist und mehr Kontrolle erforderlich ist. 1) Für Schleifen eignen sich zum Durchqueren von Sequenzen wie Listen, Zeichenfolgen usw. mit prägnantem und pythonischem Code. 2) Während Schleifen angemessener sind, wenn Sie die Schleife gemäß den Bedingungen steuern oder auf Benutzereingaben warten müssen, müssen Sie jedoch aufmerksam machen, um unendliche Schleifen zu vermeiden. 3) In Bezug auf die Leistung ist die für die Schleife etwas schneller, aber der Unterschied ist normalerweise nicht groß. Durch die Auswahl des richtigen Schleifentyps können Sie die Effizienz und Lesbarkeit Ihres Codes verbessern.

So kombinieren Sie zwei Listen in Python: 5 einfache WegeSo kombinieren Sie zwei Listen in Python: 5 einfache WegeMay 16, 2025 am 12:16 AM

In Python können Listen mit fünf Methoden zusammengeführt werden: 1) Verwenden von Operatoren, die einfach und intuitiv sind, für kleine Listen geeignet sind; 2) Verwenden Sie die Extend () -Methode, um die ursprüngliche Liste direkt zu ändern, die für Listen geeignet sind, die häufig aktualisiert werden müssen. 3) Listenanalyseformeln verwenden, präzise und operativ für Elemente; 4) Verwenden Sie die Funktion iterertools.chain (), um den Speicher effizient zu machen, und für große Datensätze geeignet. 5) Verwenden Sie * Operatoren und Zip () -Funktion, um für Szenen geeignet zu sein, in denen Elemente gepaart werden müssen. Jede Methode hat ihre spezifischen Verwendungen und Vor- und Nachteile, und die Projektanforderungen und die Leistung sollten bei der Auswahl berücksichtigt werden.

Für Schleife vs während der Schleife: Python -Syntax, Anwendungsfälle und BeispieleFür Schleife vs während der Schleife: Python -Syntax, Anwendungsfälle und BeispieleMay 16, 2025 am 12:14 AM

Forloopsusedwhenthenumberofofiterationssisknown, whileleloopsusedUntilaconDitionisMet.1) Forloopsardealforsequenceslikelisten, usingSyntax -Like'forfruitinFruits: Print (Frucht) '. 2) WhileloopsuitableFoRuancnownitationCaperitationCountcounts, z. B., z. B., z

Python -Verkettungsliste von ListenPython -Verkettungsliste von ListenMay 16, 2025 am 12:08 AM

Toconcatenatealistoflistsinpython, usextend, listCompresions, itertools.chain, orrecursivefunctions.1) ExtendMethodisStraightforwardbutverbose.2) LISTCOMPRETRAUSIERUNGEN ITCOMPREDREPENSIONSARECONCISEIDEILGEFORTICEFORGELAGELAGERDATASETEN.

Zusammenführen von Listen in Python: Auswählen der richtigen MethodeZusammenführen von Listen in Python: Auswählen der richtigen MethodeMay 14, 2025 am 12:11 AM

Tomgelistsinpython, Youcanusethe-Operator, ExtendMethod, ListCompredesion, Oritertools.chain, jeweils mitSpezifizierungen: 1) Der OperatorissimpleButlessEfficienceforlargelists; 2) Extendismory-Effizienzbutmodifiestheoriginallist;

Wie verkettet man zwei Listen in Python 3?Wie verkettet man zwei Listen in Python 3?May 14, 2025 am 12:09 AM

In Python 3 können zwei Listen mit einer Vielzahl von Methoden verbunden werden: 1) Verwenden Sie den Bediener, der für kleine Listen geeignet ist, jedoch für große Listen ineffizient ist. 2) Verwenden Sie die Erweiterungsmethode, die für große Listen geeignet ist, mit hoher Speicher -Effizienz, jedoch die ursprüngliche Liste. 3) Verwenden Sie * Operator, der für das Zusammenführen mehrerer Listen geeignet ist, ohne die ursprüngliche Liste zu ändern. 4) Verwenden Sie iTertools.chain, das für große Datensätze mit hoher Speicher -Effizienz geeignet ist.

Python Concatenate List SaitenPython Concatenate List SaitenMay 14, 2025 am 12:08 AM

Die Verwendung der join () -Methode ist die effizienteste Möglichkeit, Zeichenfolgen aus Listen in Python zu verbinden. 1) Verwenden Sie die join () -Methode, um effizient und leicht zu lesen. 2) Der Zyklus verwendet die Bediener für große Listen ineffizient. 3) Die Kombination aus Listenverständnis und Join () eignet sich für Szenarien, die Konvertierung erfordern. 4) Die Verringerung () -Methode ist für andere Arten von Reduktionen geeignet, ist jedoch für die String -Verkettung ineffizient. Der vollständige Satz endet.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Nordhold: Fusionssystem, erklärt
1 Monate vorBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
4 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

MinGW – Minimalistisches GNU für Windows

MinGW – Minimalistisches GNU für Windows

Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools