suchen
HeimBackend-EntwicklungPython-TutorialWas ist die effizienteste Möglichkeit, Funktionen über NumPy-Arrays abzubilden?

What's the Most Efficient Way to Map Functions Over NumPy Arrays?

Erkundung der effizienten Array-Zuordnung in NumPy

In dieser Diskussion befassen wir uns mit den effizientesten Methoden zur Zuordnung von Funktionen über NumPy-Arrays. Ein gängiger Ansatz besteht darin, ein Listenverständnis zu verwenden und anschließend zurück in ein NumPy-Array zu konvertieren:

import numpy as np 

x = np.array([1, 2, 3, 4, 5])
squarer = lambda t: t ** 2
squares = np.array([squarer(xi) for xi in x])

Dieser Ansatz kann jedoch aufgrund der Erstellung und Konvertierung von Python-Zwischenlisten Ineffizienzen aufweisen. Lassen Sie uns alternative Methoden erkunden, die möglicherweise eine verbesserte Leistung bieten.

Nutzung nativer NumPy-Funktionen

Wenn die Zielfunktion bereits in NumPy implementiert ist, ist es optimal, diese direkt zu nutzen, z demonstriert durch:

x ** 2

Dieser Ansatz ist aufgrund der inhärenten Optimierung von NumPys Native deutlich schneller als andere Methoden Funktionen.

Vektorisieren von Funktionen

Wenn die gewünschte Funktion nicht in NumPy enthalten ist, ist die Vektorisierung eine leistungsstarke Technik, die die elementweise Anwendung der Funktion auf das Array ermöglicht . Dies kann erreicht werden mit:

vf = np.vectorize(f)
vf(x)

Dieser Ansatz bietet eine effiziente Implementierung für vektorisierte Operationen.

Verwendung von fromiter()

Der fromiter() Die Funktion kann verwendet werden, um einen Iterator zu erstellen, der Elemente basierend auf den bereitgestellten Funktions- und Array-Werten generiert:

np.fromiter((f(xi) for xi in x), x.dtype)

Dieser Ansatz eignet sich besonders zum Generieren benutzerdefinierter Array-Elemente aus einem Iterator.

Leistungsvergleich

Empirische Tests zeigen erhebliche Leistungsunterschiede zwischen verschiedenen Mapping-Methoden. Wenn die Funktion in NumPy vektorisiert ist, ist die direkte Nutzung dieser Funktion hinsichtlich der Geschwindigkeit beispiellos. Bei benutzerdefinierten Funktionen bietet die Vektorisierung oder fromiter() häufig einen erheblichen Vorteil gegenüber auf Listenverständnis basierenden Methoden.

Fazit

Der effizienteste Ansatz für die Zuordnung von Funktionen über NumPy-Arrays hängt von der spezifischen Funktion und den Dateneigenschaften ab. Wenn möglich, wird dringend empfohlen, native NumPy-Funktionen zu nutzen. Vektorisierung und fromiter() bieten effiziente Alternativen für benutzerdefinierte Funktionen. Leistungstests sind unerlässlich, um die optimale Methode für ein bestimmtes Szenario zu ermitteln.

Das obige ist der detaillierte Inhalt vonWas ist die effizienteste Möglichkeit, Funktionen über NumPy-Arrays abzubilden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Python: Compiler oder Dolmetscher?Python: Compiler oder Dolmetscher?May 13, 2025 am 12:10 AM

Python ist eine interpretierte Sprache, enthält aber auch den Zusammenstellungsprozess. 1) Python -Code wird zuerst in Bytecode zusammengestellt. 2) Bytecode wird von Python Virtual Machine interpretiert und ausgeführt. 3) Dieser Hybridmechanismus macht Python sowohl flexibel als auch effizient, aber nicht so schnell wie eine vollständig kompilierte Sprache.

Python für Loop vs während der Schleife: Wann zu verwenden, welches?Python für Loop vs während der Schleife: Wann zu verwenden, welches?May 13, 2025 am 12:07 AM

UseaforloopwheniteratoverasequenceOrforaPecificNumberoftimes; UseaWhileloopWencontiningUntilAconDitionisMet.ForloopsardealForknown -Sequencies, während whileloopSuituationen mithungeterminediterationen.

Python Loops: Die häufigsten FehlerPython Loops: Die häufigsten FehlerMay 13, 2025 am 12:07 AM

PythonloopscanleadtoErors-ähnliche Finanzeloops, ModificingListsDuringiteration, Off-by-Oneerrors, Zero-Indexingissues und Nestroxinefficiens.toavoidthese: 1) Verwenden Sie

Für Schleife und während der Schleife in Python: Was sind die Vorteile von jedem?Für Schleife und während der Schleife in Python: Was sind die Vorteile von jedem?May 13, 2025 am 12:01 AM

ForloopSareadVantageousForknowniterations und Sequences, OfferingImplicity und Readability;

Python: Ein tiefes Eintauchen in Zusammenstellung und InterpretationPython: Ein tiefes Eintauchen in Zusammenstellung und InterpretationMay 12, 2025 am 12:14 AM

PythonusesahybridmodelofCompilation und Interpretation: 1) thepythonInterPreterCompilessourceCodeIntoplatform-unintenpendentBytecode.2) Thepythonvirtualmachine (PVM) ThenexexexexecthisByTeCode, BalancingeAnsewusewithperformance.

Ist Python eine interpretierte oder eine kompilierte Sprache, und warum ist es wichtig?Ist Python eine interpretierte oder eine kompilierte Sprache, und warum ist es wichtig?May 12, 2025 am 12:09 AM

Pythonisbothinterpreted und kompiliert.1) ItscompiledToByteCodeForPortabilityAcrossplatform.2) thytecodeTheninterpreted, und das ErlaubnisfordyNamictyPingandRapidDevelopment zulässt, obwohl es sich

Für Schleife vs während der Schleife in Python: Schlüsselunterschiede erklärtFür Schleife vs während der Schleife in Python: Schlüsselunterschiede erklärtMay 12, 2025 am 12:08 AM

ForloopsaridealWenyouKnowtHenumberofofiterationssinadvance, während whileloopsarebetterForsituationswhereyouneedtoloopuntilaconditionismet.forloopsaremoreffictionAndable, geeigneter Verfaserungsverlust, whereaswiloopsofofermorcontrolanduseusefulfulf

Für und während Schleifen: ein praktischer LeitfadenFür und während Schleifen: ein praktischer LeitfadenMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Nordhold: Fusionssystem, erklärt
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Flüstern des Hexenbaum
3 Wochen vorBy尊渡假赌尊渡假赌尊渡假赌

Heiße Werkzeuge

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

DVWA

DVWA

Damn Vulnerable Web App (DVWA) ist eine PHP/MySQL-Webanwendung, die sehr anfällig ist. Seine Hauptziele bestehen darin, Sicherheitsexperten dabei zu helfen, ihre Fähigkeiten und Tools in einem rechtlichen Umfeld zu testen, Webentwicklern dabei zu helfen, den Prozess der Sicherung von Webanwendungen besser zu verstehen, und Lehrern/Schülern dabei zu helfen, in einer Unterrichtsumgebung Webanwendungen zu lehren/lernen Sicherheit. Das Ziel von DVWA besteht darin, einige der häufigsten Web-Schwachstellen über eine einfache und unkomplizierte Benutzeroberfläche mit unterschiedlichen Schwierigkeitsgraden zu üben. Bitte beachten Sie, dass diese Software

Dreamweaver CS6

Dreamweaver CS6

Visuelle Webentwicklungstools

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools