


Formatieren von Datumsangaben in Pandas
Beim Importieren eines Datenrahmens mit einer Datums-/Uhrzeitspalte konvertiert Pandas ihn möglicherweise automatisch in einen Objekttyp. Um eine ordnungsgemäße Formatierung sicherzustellen, ist häufig eine Konvertierung der Spalte in einen datetime64-Typ erforderlich. Dies kann jedoch zu einem unerwünschten Datumsformat führen.
Datetime-Format konvertieren
Um das Datetime-Format nach der Konvertierung in datetime64 zu ändern, können Sie die Methode dt.strftime verwenden . Dadurch können Sie das gewünschte Datumsformat als Zeichenfolge angeben. Der resultierende dtype wird ein Objekttyp (String) sein.
import pandas as pd df = pd.DataFrame({'DOB': {0: '26/1/2016'}}) df['DOB'] = pd.to_datetime(df['DOB']) df['DOB1'] = df['DOB'].dt.strftime('%m/%d/%Y')
Beispiel
In diesem Beispiel ist die DOB-Spalte zunächst ein Objekttyp mit dem Format „ 26.01.2016". Nach der Konvertierung in datetime64 lautet das Format „26.01.2016“. Mit dt.strftime erstellen wir eine neue Spalte, DOB1, mit dem bevorzugten Format „26.01.2016“.
Überlegungen
Ändern des Datumsformats in a string führt zu einem Objekt-Dtype. Dies ist möglicherweise nicht für Berechnungen oder andere Vorgänge geeignet, die einen Datum/Uhrzeit-Typ erfordern. Wenn die Beibehaltung des datetime-Typs unerlässlich ist, sollten Sie benutzerdefinierte Formatierungsoptionen innerhalb der dt.strftime-Methode verwenden, um das gewünschte Format zu erreichen und gleichzeitig den datetime-dtype beizubehalten.
Das obige ist der detaillierte Inhalt vonWie kann ich Datumsangaben in einem Pandas-DataFrame nach der Konvertierung in datetime64 formatieren?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Ja, youcanconcatenatelistenusexoopinpython.1) useSeparateloopsforeachListtoAppendItemStoaresultlist.2) UsEnestedLooptoeratevermultiplelistsforamoreConciseApproach.3) ApplicationLogicduringCatenation, LikeFilteringeAntevernumber,

ThemostEfficienceMethodsforcatenatlistListsinpythonare: 1) Theextend () methodeforin-placemodification, 2) iTertools.chain () Formemoryefficiencywithlargedatasets

Pythonloopsincludeforandwhileloops, Withforloopsidealforsequences und Whileloopsforcondition-basiertesRepetition.BestPracticesinvolve: 1) Verwenden von listCompraResionsForSimplansformationen, 2) Einbeziehung von ForenIndex-Valuepairs, 3) optingforransformationen

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python ist nicht streng line-by-line-Ausführung, sondern wird basierend auf dem Interpreter-Mechanismus optimiert und bedingte Ausführung. Der Interpreter konvertiert den Code in Bytecode, der von der PVM ausgeführt wird, und kann konstante Ausdrücke vorkompilieren oder Schleifen optimieren. Das Verständnis dieser Mechanismen trägt dazu bei, den Code zu optimieren und die Effizienz zu verbessern.

Es gibt viele Methoden, um zwei Listen in Python zu verbinden: 1. Verwenden Sie Operatoren, die in großen Listen einfach, aber ineffizient sind; 2. Verwenden Sie die Erweiterungsmethode, die effizient ist, die ursprüngliche Liste jedoch ändert. 3.. Verwenden Sie den operator =, der sowohl effizient als auch lesbar ist; 4. Verwenden Sie die Funktion iterertools.chain, die Speichereffizient ist, aber zusätzlichen Import erfordert. 5. Verwenden Sie List Parsing, die elegant ist, aber zu komplex sein kann. Die Auswahlmethode sollte auf dem Codekontext und den Anforderungen basieren.

Es gibt viele Möglichkeiten, Python -Listen zusammenzuführen: 1. Verwenden von Operatoren, die einfach, aber nicht für große Listen effizient sind; 2. Verwenden Sie die Erweiterungsmethode, die effizient ist, die ursprüngliche Liste jedoch ändert. 3. Verwenden Sie iTertools.chain, das für große Datensätze geeignet ist. 4. Verwenden Sie * Operator, fusionieren Sie kleine bis mittelgroße Listen in einer Codezeile. 5. Verwenden Sie Numpy.concatenate, das für große Datensätze und Szenarien mit hohen Leistungsanforderungen geeignet ist. 6. Verwenden Sie die Append -Methode, die für kleine Listen geeignet ist, aber ineffizient ist. Bei der Auswahl einer Methode müssen Sie die Listengröße und die Anwendungsszenarien berücksichtigen.

CompiledLanguageOfferSpeedandSecurity, während interpretedLanguagesProvideaseofuseAnDportabilität.1) kompiledlanguageslikec areFasterandSecurebuthavelongerDevelopmentCyclesandplatformDependency.2) InterpretedLanguages -pythonareaToReAndoreAndorePortab


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

EditPlus chinesische Crack-Version
Geringe Größe, Syntaxhervorhebung, unterstützt keine Code-Eingabeaufforderungsfunktion

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

ZendStudio 13.5.1 Mac
Leistungsstarke integrierte PHP-Entwicklungsumgebung
