Die dynamische Natur der Finanzmärkte erfordert die Nutzung zuverlässiger Daten zur Entwicklung und Validierung von Handelsstrategien. Für Händler und Analysten ist die effiziente Integration hochwertiger Daten in Backtesting-Umgebungen von entscheidender Bedeutung. TraderMade-APIs unterstützen diese Fachleute, indem sie präzise, detaillierte und umfassende Marktdaten bereitstellen.
Diese Analyse nutzt die Zeitreihen-API von TraderMade, um historische Daten zu erhalten, eine einfache Crossover-Strategie für den einfachen gleitenden Durchschnitt (SMA) auszuführen und ihre historische Leistung zu bewerten.
Über die SMA Crossover-Strategie
Die Simple Moving Average (SMA) Crossover-Strategie ist eine grundlegende technische Analysetechnik. Dabei werden zwei SMAs beobachtet: ein kurzfristiger SMA, der eine höhere Empfindlichkeit gegenüber Preisänderungen aufweist, und ein langfristiger SMA, der die Auswirkungen kurzfristiger Preisvolatilität abschwächt.
Ein Kaufsignal wird generiert, wenn der kurzfristige SMA den langfristigen SMA übertrifft, was auf einen möglichen Aufwärtstrend hinweist. Umgekehrt wird ein Verkaufssignal ausgelöst, wenn der kurzfristige SMA unter den langfristigen SMA fällt, was auf einen möglichen Abwärtstrend hindeutet.
Datenerfassung
Beginnen Sie mit der Installation des SDK von TraderMade wie folgt:
!pip install tradermade
Wir verwenden das installierte Software Development Kit (SDK), um stündliche Zeitreihendaten für Devisenpaare (Forex) abzurufen. Der nachfolgende Python-Code veranschaulicht den Erhalt von Daten für das Währungspaar EUR/USD.
import tradermade as tm import pandas as pd def fetch_forex_data(api_key, currency, start_date, end_date, interval="hourly", fields=["open", "high", "low", "close"]): # Set API key tm.set_rest_api_key(api_key) # Fetch the data data = tm.timeseries(currency=currency, start=start_date, end=end_date, interval=interval, fields=fields) # Convert data directly to DataFrame df = pd.DataFrame(data) # Convert 'date' column to datetime df["date"] = pd.to_datetime(df["date"]) # Set 'date' as the index df.set_index("date", inplace=True) return df # Adjust as needed api_key = "YOUR TRADERMADE API KEY" currency = "EURUSD" start_date = "2024-11-01-00:00" end_date = "2024-11-27-05:12" # Fetch the data and display the first few rows forex_data = fetch_forex_data(api_key, currency, start_date, end_date) forex_data = forex_data.rename(columns={"open": "Open", "high": "High", "low": "Low", "close": "Close"}) forex_data.head()
Datenerfassung und Vorverarbeitung für das Backtesting wurden erfolgreich abgeschlossen.
Implementierung und Backtesting einer einfachen SMA-Crossover-Strategie
In diesem Abschnitt wird die Backtesting-Python-Bibliothek verwendet, um unsere SMA-Crossover-Strategie zu definieren und zu bewerten. Für diejenigen, die mit der Backtesting-Bibliothek nicht vertraut sind: Sie gilt als herausragendes und robustes Python-Framework für das Backtesting technischer Handelsstrategien. Diese Strategien umfassen ein vielfältiges Spektrum, einschließlich SMA-Crossover, RSI-Crossover, Mean-Reversal-Strategien, Momentum-Strategien und andere.
import numpy as np from backtesting import Backtest, Strategy from backtesting.lib import crossover from backtesting.test import SMA # Define the SMA crossover trading strategy class SMACrossoverStrategy(Strategy): def init(self): # Calculate shorter-period SMAs for limited data price = self.data.Close self.short_sma = self.I(SMA, price, 20) # Short window self.long_sma = self.I(SMA, price, 60) # Long window def next(self): # Check for crossover signals if crossover(self.short_sma, self.long_sma): self.buy() elif crossover(self.long_sma, self.short_sma): self.sell() # Initialize and run the backtest bt = Backtest(forex_data, SMACrossoverStrategy, cash=10000, commission=.002) result = bt.run() # Display the backtest results print("Backtest Results:") print(result)
Die Strategie verwendet zwei gleitende Durchschnitte: einen 20-Perioden- und einen 60-Perioden-SMA. Eine Kauforder wird ausgeführt, wenn der kurzfristige SMA den langfristigen SMA überschreitet. Umgekehrt wird ein Verkaufsauftrag ausgelöst, wenn der kurzfristige SMA unter den langfristigen SMA fällt. Innerhalb eines 25-tägigen Handelszeitraums erzielte diese unkomplizierte Strategie bei sechs Trades einen Gewinn von 243 $.
Aktien- und SMA-Kurvenanalyse
Der nachfolgende Python-Code bewertet die Leistung der SMA-Crossover-Strategie. SMAs erleichtern die Visualisierung von Preistrends und identifizieren Kreuzungspunkte, die Kauf-/Verkaufssignale generieren. Die Aktienkurve dient als Leistungskennzahl und veranschaulicht die Auswirkung dieser Signale auf das Portfoliowachstum.
Durch die Integration beider Kurven können Händler die Korrelation zwischen Crossover-Ereignissen und Änderungen im Portfoliowert leicht beobachten und so wichtige Einblicke in die Wirksamkeit der SMA-Crossover-Strategie liefern.
Plotly wird verwendet, um die Aktien- und SMA-Kurven zu visualisieren, sodass Händler die Rentabilität ihrer Strategie effektiv bewerten können.
!pip install tradermade
Abschließende Bemerkungen
Erfolgreiches Backtesting erfordert genaue, hochfrequente Daten, und die APIs von TraderMade ermöglichen eine nahtlose Integration. Unabhängig von Ihrem Erfahrungsniveau – ob Sie ein Neuling sind, der verschiedene Strategien erforscht, oder ein erfahrener Analyst, der anspruchsvolle Modelle entwickelt – die Angebote des Unternehmens bieten die notwendigen Werkzeuge.
Sind Sie bereit, die APIs von TraderMade in Ihren Workflow zu integrieren? Beginnen Sie noch heute Ihre Reise und setzen Sie Ihre Konzepte in die Realität um.
Das obige ist der detaillierte Inhalt vonBacktest wie ein Profi mit einer Forex-API. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Python eignet sich für Datenwissenschafts-, Webentwicklungs- und Automatisierungsaufgaben, während C für Systemprogrammierung, Spieleentwicklung und eingebettete Systeme geeignet ist. Python ist bekannt für seine Einfachheit und sein starkes Ökosystem, während C für seine hohen Leistung und die zugrunde liegenden Kontrollfunktionen bekannt ist.

Sie können grundlegende Programmierkonzepte und Fähigkeiten von Python innerhalb von 2 Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master Control Flow (bedingte Anweisungen und Schleifen), 3.. Verstehen Sie die Definition und Verwendung von Funktionen, 4. Beginnen Sie schnell mit der Python -Programmierung durch einfache Beispiele und Code -Snippets.

Python wird in den Bereichen Webentwicklung, Datenwissenschaft, maschinelles Lernen, Automatisierung und Skripten häufig verwendet. 1) In der Webentwicklung vereinfachen Django und Flask Frameworks den Entwicklungsprozess. 2) In den Bereichen Datenwissenschaft und maschinelles Lernen bieten Numpy-, Pandas-, Scikit-Learn- und TensorFlow-Bibliotheken eine starke Unterstützung. 3) In Bezug auf Automatisierung und Skript ist Python für Aufgaben wie automatisiertes Test und Systemmanagement geeignet.

Sie können die Grundlagen von Python innerhalb von zwei Stunden lernen. 1. Lernen Sie Variablen und Datentypen, 2. Master -Steuerungsstrukturen wie wenn Aussagen und Schleifen, 3. Verstehen Sie die Definition und Verwendung von Funktionen. Diese werden Ihnen helfen, einfache Python -Programme zu schreiben.

Wie lehre ich innerhalb von 10 Stunden die Grundlagen für Computer -Anfänger für Programmierungen? Wenn Sie nur 10 Stunden Zeit haben, um Computer -Anfänger zu unterrichten, was Sie mit Programmierkenntnissen unterrichten möchten, was würden Sie dann beibringen ...

Wie kann man nicht erkannt werden, wenn Sie Fiddlereverywhere für Man-in-the-Middle-Lesungen verwenden, wenn Sie FiddLereverywhere verwenden ...

Laden Sie Gurkendateien in Python 3.6 Umgebungsbericht Fehler: ModulenotFoundError: Nomodulennamen ...

Wie löste ich das Problem der Jiebeba -Wortsegmentierung in der malerischen Spot -Kommentaranalyse? Wenn wir malerische Spot -Kommentare und -analysen durchführen, verwenden wir häufig das Jieba -Word -Segmentierungstool, um den Text zu verarbeiten ...


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

Dreamweaver Mac
Visuelle Webentwicklungstools

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.