


Warum unterscheidet sich das lexikalische Schließungsverhalten von Python von dem von Perl?
Entschlüsselung lexikalischer Abschlüsse in Python vs. Perl
Bei der Untersuchung lexikalischer Abschlüsse in Javascript stellt sich die Frage nach ihrem besonderen Verhalten in Python. Betrachten Sie den folgenden Python-Code:
flist = [] for i in xrange(3): def func(x): return x * i flist.append(func) for f in flist: print f(2)
Überraschenderweise gibt er „4 4 4“ anstelle des erwarteten „0 2 4“ aus.
Im Gegensatz dazu erzeugt dieser äquivalente Perl-Code das Gewünschte Ergebnis:
my @flist = (); foreach my $i (0 .. 2) { push(@flist, sub {$i * $_[0]}); } foreach my $f (@flist) { print $f->(2), "\n"; }
Der Basiswert Unterschied
Der Hauptunterschied liegt darin, wie Abschlüsse ihre Umgebung erfassen.
- Python:Funktionen, die innerhalb einer Schleife erstellt werden, teilen alle den Abschluss der Schleife Umfeld. Da die Schleifenvariable i geändert wird, verweisen alle Funktionen auf dasselbe geänderte i.
- Perl: Innerhalb einer Schleife erstellte Funktionen haben jeweils ihren eigenen Abschluss und erfassen den Wert von i zum Zeitpunkt ihrer Eingabe sind definiert.
Eine Python-Lösung
Um das erwartete Verhalten in Python zu erreichen, benötigen Sie um für jede Funktion separate Umgebungen zu erzwingen. Eine Lösung besteht darin, einen Funktionsersteller zu erstellen, der eine Funktion mit einem anderen Abschluss zurückgibt:
flist = [] for i in xrange(3): def funcC(j): def func(x): return x * j return func flist.append(funcC(i)) for f in flist: print f(2)
Diese Methode stellt sicher, dass jede Funktion ihren eigenen Abschluss mit ihrem eigenen eindeutigen Wert von i hat.
Das obige ist der detaillierte Inhalt vonWarum unterscheidet sich das lexikalische Schließungsverhalten von Python von dem von Perl?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Die grundlegende Syntax für die Python -Liste ist die Liste [START: STOP: STEP]. 1.Start ist der erste Elementindex, 2.Stop ist der erste Elementindex, und 3.Step bestimmt die Schrittgröße zwischen den Elementen. Scheiben werden nicht nur zum Extrahieren von Daten verwendet, sondern auch zum Ändern und Umkehrlisten.

ListSoutPer -CharakterArraysin: 1) Dynamics und Dynamics und 3), 2) StoringHeterogenData und 3) MemoryefficiencyForSparsedata, ButmayHavesLightPerformanceCostIncustonTectorationOperationen.

Toconvertapythonarraytoalist, Usethelist () constructororageneratorexpression.1) ImportThearrayModuleandCreateanarray.2) Uselist (arr) oder [xForxinarr] Toconvertittoalist in Betracht, überlegt Performance undMoryefficiencyForlargedatasets.

ChoosearraySoverlistsinpythonforbetterperformanceAndMemoryefficienceInspezifizarios.1) largenumericalDatasets: ArraysReDucemoryusage.2) leistungskritische Operationen: ArraysOfferspeedboostsForsforsarching.3) TypeSafety: ArraysStety

In Python können Sie Verständnissen für Schleifen, Aufzählungen und Listen für durchqueren Listen verwenden. In Java können Sie traditionelle für Schleifen verwenden und für Schleifen zu durchqueren Arrays erweitert. 1. Python List Traversal Methods gehören: für Schleifen, Aufzählung und Listenverständnis. 2. Java Array Traversal -Methoden umfassen: traditionell für Schleife und erweitert für die Schleife.

In dem Artikel wird die in Version 3.10 eingeführte "Match" -serklärung von Python erörtert, die als Äquivalent zum Wechseln von Aussagen in anderen Sprachen dient. Es verbessert die Code-Lesbarkeit und bietet Leistungsvorteile gegenüber herkömmlichen IF-ELIF-EL

Ausnahmegruppen in Python 3.11 ermöglichen die gleichzeitige Behandlung mehrerer Ausnahmen, wodurch die Fehlermanagement in gleichzeitigen Szenarien und komplexen Vorgängen verbessert wird.

Funktionsanmerkungen in Python Fügen Sie Metadaten zu Funktionen für Typprüfungen, Dokumentation und IDE -Unterstützung hinzu. Sie verbessern die Lesbarkeit, die Wartung der Code und die API -Entwicklung, die Datenwissenschaft und die Erstellung der Bibliothek von entscheidender Bedeutung.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

WebStorm-Mac-Version
Nützliche JavaScript-Entwicklungstools

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.
