


Aufteilen eines Pandas-DataFrames basierend auf Spaltenwerten mithilfe von Groupby
Dieser Artikel stellt eine Lösung für die Herausforderung vor, einen DataFrame basierend auf Spaltenwerten in mehrere Teile aufzuteilen auf eindeutige Werte innerhalb einer bestimmten Spalte.
Beachten Sie Folgendes DataFrame:
import pandas as pd df = pd.DataFrame({ "N0_YLDF": [6.286333, 6.317000, 6.324889, 6.320667, 6.325556, 6.359000, 6.359000, 6.361111, 6.360778, 6.361111], "ZZ": [2, 6, 6, 5, 5, 6, 6, 7, 7, 6], "MAT": [11.669069, 11.669069, 11.516454, 11.516454, 11.516454, 11.516454, 11.516454, 11.516454, 11.516454, 11.516454] })
Das Ziel besteht darin, einen neuen DataFrame zu erstellen, der mehrere Spalten für die Spalte „N0_YLDF“ aufweist, wobei jede Spalte einem eindeutigen Wert in der Spalte „ZZ“ entspricht. Um dies zu erreichen, können wir die Funktion „groupby()“ verwenden.
grouped_df = df.groupby("ZZ")
Die Funktion „groupby()“ erstellt ein pandas.core.groupby.groupby.DataFrameGroupBy-Objekt, das den DataFrame mit den entsprechend aufgeteilten Gruppen darstellt die Werte in der angegebenen Spalte. In diesem Fall haben wir vier Gruppen:
print(grouped_df.groups) # Output {2: [0], 6: [1, 2, 5, 6, 9], 5: [3, 4], 7: [7, 8]}
Um die einzelnen DataFrames für jede Gruppe zu erhalten, können wir Listenverständnis verwenden:
split_dfs = [grouped_df.get_group(key) for key in grouped_df.groups]
Die Methode get_group() gibt einen DataFrame zurück die die Zeilen enthält, die zur angegebenen Gruppe gehören.
Die resultierende split_dfs-Liste enthält vier DataFrames, von denen jeder einen anderen Wert im „ZZ“ darstellt. Spalte.
Um beispielsweise auf den DataFrame für die Gruppe mit dem „ZZ“-Wert 6 zuzugreifen, können Sie Folgendes verwenden:
split_df_6 = split_dfs[1]
Dadurch erhalten Sie einen DataFrame mit den folgenden Zeilen:
N0_YLDF ZZ MAT 1 6.317000 6 11.669069 2 6.324889 6 11.516454 5 6.359000 6 11.516454 6 6.359000 6 11.516454 9 6.361111 6 11.516454
Durch die Verwendung der Funktion „groupby()“ und der Methode „get_group()“ können Sie einen DataFrame basierend auf den Werten in einem bestimmten Wert effektiv in mehrere Teile aufteilen Spalte.
Das obige ist der detaillierte Inhalt vonWie teile ich einen Pandas-DataFrame basierend auf den eindeutigen Werten einer Spalte in mehrere DataFrames auf?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

NumpyisessentialfornumericalComputingInpythonduetoitsSpeed, GedächtnisEffizienz und kompetentiertemaMatematical-Funktionen.1) ITSFACTBECAUSPERFORMATIONSOPERATIONS.2) NumpyarraysSaremoremory-Effecthonpythonlists.3) iTofferSAgyarraysAremoremory-Effizieren

ContInuuousMemoryAllocationScrucialforAraysBecauseAltoLowsFofficy und Fastelement Access.1) iTenablesconstantTimeAccess, O (1), Duetodirectaddresscalculation.2) itimProvesefficienceByallowing -MultipleTeLementFetchesperCacheline.3) Es wird gestellt

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 Linux neue Version
SublimeText3 Linux neueste Version

VSCode Windows 64-Bit-Download
Ein kostenloser und leistungsstarker IDE-Editor von Microsoft

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),
