Caltech in PyTorch

Mary-Kate Olsen
Mary-Kate OlsenOriginal
2024-12-12 10:27:09996Durchsuche

Kauf mir einen Kaffee☕

*Mein Beitrag erklärt Caltech 101.

Caltech101() kann den Caltech 101-Datensatz wie unten gezeigt verwenden:

*Memos:

  • Das 1. Argument ist root(Required-Type:str oder pathlib.Path). *Ein absoluter oder relativer Pfad ist möglich.
  • Das 2. Argument ist target_type(Optional-Default:"category"-Type:str oder Tupel oder Liste von str): *Memos:
    • „Kategorie“ und/oder „Anmerkung“ können darauf eingestellt werden.
    • Die 8.677 Bilder mit den Beschriftungen aus 101 Kategorien (Klassen) und/oder mit Anmerkungen werden zurückgegeben.
  • Das dritte Argument ist transform(Optional-Default:None-Type:callable).
  • Das 4. Argument ist target_transform(Optional-Default:None-Type:callable).
  • Das 5. Argument ist download(Optional-Default:False-Type:bool): *Memos:
    • Wenn es wahr ist, wird der Datensatz aus dem Internet heruntergeladen und in das Stammverzeichnis extrahiert (entpackt).
    • Wenn es „True“ ist und der Datensatz bereits heruntergeladen wurde, wird er extrahiert.
    • Wenn es „True“ ist und der Datensatz bereits heruntergeladen und extrahiert wurde, passiert nichts.
    • Es sollte „False“ sein, wenn der Datensatz bereits heruntergeladen und extrahiert wurde, da es schneller ist.
    • Zum Herunterladen des Datensatzes ist gdown erforderlich.
    • Sie können den Datensatz (101_ObjectCategories.tar.gz und Annotations.tar) manuell herunterladen und von hier nach data/caltech101/ extrahieren.
  • Über die Kategorien (Beschriftungen) der Bildindizes: Gesichter(0) ist 0~434, Faces_easy(1) ist 435~869, Leoparden(2) ist 870~1069, Motorräder(3) ist 1070~1867, Akkordeon(4) ist 1868~1922, Flugzeuge(5) ist 1923~2722, Anker(6) ist 2723~2764, ant(7) ist 2765~2806, barrel(8) ist 2807~2853, bass(9) ist 2854~2907 usw .
from torchvision.datasets import Caltech101

category_data = Caltech101(
    root="data"
)

category_data = Caltech101(
    root="data",
    target_type="category",
    transform=None,
    target_transform=None,
    download=False
)

annotation_data = Caltech101(
    root="data",
    target_type="annotation"
)

all_data = Caltech101(
    root="data",
    target_type=["category", "annotation"]
)

len(category_data), len(annotation_data), len(all_data)
# (8677, 8677, 8677)

category_data
# Dataset Caltech101
#     Number of datapoints: 8677
#     Root location: data\caltech101
#     Target type: ['category']

category_data.root
# 'data/caltech101'

category_data.target_type
# ['category']

print(category_data.transform)
# None

print(category_data.target_transform)
# None

category_data.download
# <bound method Caltech101.download of Dataset Caltech101
#     Number of datapoints: 8677
#     Root location: data\caltech101
#     Target type: ['category']>

len(category_data.categories)
# 101

category_data.categories
# ['Faces', 'Faces_easy', 'Leopards', 'Motorbikes', 'accordion', 
#  'airplanes', 'anchor', 'ant', 'barrel', 'bass', 'beaver',
#  'binocular', 'bonsai', 'brain', 'brontosaurus', 'buddha',
#  'butterfly', 'camera', 'cannon', 'car_side', 'ceiling_fan',
#  'cellphone', 'chair', 'chandelier', 'cougar_body', 'cougar_face', ...]

len(category_data.annotation_categories)
# 101

category_data.annotation_categories
# ['Faces_2', 'Faces_3', 'Leopards', 'Motorbikes_16', 'accordion',
#  'Airplanes_Side_2', 'anchor', 'ant', 'barrel', 'bass',
#  'beaver', 'binocular', 'bonsai', 'brain', 'brontosaurus',
#  'buddha', 'butterfly', 'camera', 'cannon', 'car_side',
#  'ceiling_fan', 'cellphone', 'chair', 'chandelier', 'cougar_body', ...]

category_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>, 0)

category_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>, 0)

category_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>, 0)

category_data[435]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=290x334>, 1)

category_data[870]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=192x128>, 2)

annotation_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>,
#  array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...],
#         [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]]))

annotation_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>,
#  array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...],
#         [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]]))

annotation_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>,
#  array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...],
#         [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]]))

annotation_data[435]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=290x334>,
#  array([[64.52631579, 95.31578947, 123.26315789, 149.31578947, ...],
#         [15.42105263, 8.31578947, 10.21052632, 28.21052632, ...]]))

annotation_data[870]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=192x128>,
#  array([[2.96536524, 7.55604534, 19.45780856, 33.73992443, ...],
#         [23.63413098, 32.13539043, 33.83564232, 8.84193955, ...]]))

all_data[0]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=510x337>,
#  (0, array([[10.00958466, 8.18210863, 8.18210863, 10.92332268, ...],
#             [132.30670927, 120.42811502, 103.52396166, 90.73162939, ...]]))

all_data[1]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=519x343>,
#  (0, array([[15.19298246, 13.71929825, 15.19298246, 19.61403509, ...],
#             [121.5877193, 103.90350877, 80.81578947, 64.11403509, ...]]))

all_data[2]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=492x325>,
#  (0, array([[10.40789474, 7.17807018, 5.79385965, 9.02368421, ...],
#             [131.30789474, 120.69561404, 102.23947368, 86.09035088, ...]]))

all_data[3]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=538x355>,
#  (0, array([[19.54035088, 18.57894737, 26.27017544, 38.2877193, ...],
#             [131.49122807, 100.24561404, 74.2877193, 49.29122807, ...]]))

all_data[4]
# (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=528x349>,
#  (0, array([[11.87982456, 11.87982456, 13.86578947, 15.35526316, ...],
#             [128.34649123, 105.50789474, 91.60614035, 76.71140351, ...]]))

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    ims = (0, 1, 2, 435, 870, 1070, 1868, 1923, 2723, 2765, 2807, 2854)
    for i, j in enumerate(ims, start=1):
        plt.subplot(2, 5, i)
        if len(data.target_type) == 1:
            if data.target_type[0] == "category":
                im, lab = data[j]
                plt.title(label=lab)
            elif data.target_type[0] == "annotation":
                im, (px, py) = data[j]
                plt.scatter(x=px, y=py)
            plt.imshow(X=im)
        elif len(data.target_type) == 2:
            if data.target_type[0] == "category":
                im, (lab, (px, py)) = data[j]
            elif data.target_type[0] == "annotation":
                im, ((px, py), lab) = data[j]
            plt.title(label=lab)
            plt.imshow(X=im)
            plt.scatter(x=px, y=py)
        if i == 10:
            break
    plt.tight_layout()
    plt.show()

show_images(data=category_data, main_title="category_data")
show_images(data=annotation_data, main_title="annotation_data")
show_images(data=all_data, main_title="all_data")

Caltech in PyTorch

Caltech in PyTorch

Caltech in PyTorch

Das obige ist der detaillierte Inhalt vonCaltech in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme:
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn