suchen
QMNIST in PyTorchDec 11, 2024 pm 04:01 PM

Kauf mir einen Kaffee☕

*Mein Beitrag erklärt QMNIST.

QMNIST() kann den QMNIST-Datensatz wie unten gezeigt verwenden:

*Memos:

  • Das 1. Argument ist root(Required-Type:str oder pathlib.Path). *Ein absoluter oder relativer Pfad ist möglich.
  • Das 2. Argument ist what(Optional-Default:None-Type:str). *Es können „train“ (60.000 Bilder), „test“ (60.000 Bilder), „test10k“ (10.000 Bilder), „test50k“ (50.000 Bilder) oder „nist“ (402.953 Bilder) eingestellt werden.
  • Das dritte Argument ist kompatibel (Optional-Default:True-Type:bool). *Wenn es „True“ ist, wird die Klassennummer jedes Bildes zurückgegeben (aus Gründen der Kompatibilität mit dem MNIST-Datenlader), während wenn es „False“ ist, der 1D-Tensor der vollständigen qmnist-Informationen zurückgegeben wird.
  • Das 4. Argument ist das Zugargument (Optional-Default:True-Type:bool): *Memos:
    • Es wird ignoriert, wenn etwas nicht „Keine“ ist.
    • Wenn es wahr ist, werden Trainingsdaten (60.000 Bilder) verwendet, während wenn es falsch ist, Testdaten (60.000 Bilder) verwendet werden.
  • Es gibt ein Transformationsargument (Optional-Default:None-Type:callable). *transform= muss verwendet werden.
  • Es gibt das Argument target_transform (Optional-Default:None-Type:callable). *target_transform= muss verwendet werden.
  • Es gibt ein Download-Argument (Optional-Default:False-Type:bool): *Memos:
    • download= muss verwendet werden.
    • Wenn es wahr ist, wird der Datensatz aus dem Internet heruntergeladen und in das Stammverzeichnis extrahiert (entpackt).
    • Wenn es „True“ ist und der Datensatz bereits heruntergeladen wurde, wird er extrahiert.
    • Wenn es „True“ ist und der Datensatz bereits heruntergeladen und extrahiert wurde, passiert nichts.
    • Es sollte „False“ sein, wenn der Datensatz bereits heruntergeladen und extrahiert wurde, da es schneller ist.
    • Sie können den Datensatz hier manuell herunterladen und extrahieren, um ihn z. data/QMNIST/raw/.
from torchvision.datasets import QMNIST

train_data = QMNIST(
    root="data"
)

train_data = QMNIST(
    root="data",
    what=None,
    compat=True,
    train=True,
    transform=None,
    target_transform=None,
    download=False
)

train_data = QMNIST(
    root="data",
    what="train",
    train=False
)

test_data1 = QMNIST(
    root="data",
    train=False
)

test_data1 = QMNIST(
    root="data",
    what="test",
    train=True
)

test_data2 = QMNIST(
    root="data",
    what="test10k"
)

test_data3 = QMNIST(
    root="data",
    what="test50k",
    compat=False
)

nist_data = QMNIST(
    root="data",
    what="nist"
)

l = len
l(train_data), l(test_data1), l(test_data2), l(test_data3), l(nist_data)
# (60000, 60000, 10000, 50000, 402953)

train_data
# Dataset QMNIST
#     Number of datapoints: 60000
#     Root location: data
#     Split: train

train_data.root
# 'data'

train_data.what
# 'train'

train_data.compat
# True

train_data.train
# True

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method qmnist.download of dataset qmnist number datapoints: root location: data split: train>

train_data[0]
# (<pil.image.image image mode="L" size="28x28">, 5)

test_data3[0]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([3, 4, 2424, 51, 33, 261051, 0, 0]))

train_data[1]
# (<pil.image.image image mode="L" size="28x28">, 0)

test_data3[1]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([8, 1, 522, 60, 38, 55979, 0, 0]))

train_data[2]
# (<pil.image.image image mode="L" size="28x28">, 4)

test_data3[2]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([9, 4, 2496, 115, 39, 269531, 0, 0]))

train_data[3]
# (<pil.image.image image mode="L" size="28x28">, 1)

test_data3[3]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([5, 4, 2427, 77, 35, 261428, 0, 0]))

train_data[4]
# (<pil.image.image image mode="L" size="28x28">, 9)

test_data3[4]
# (<pil.image.image image mode="L" size="28x28">,
#  tensor([7, 4, 2524, 69, 37, 272828, 0, 0]))

train_data.classes
# ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
#  '5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
</pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></bound>
from torchvision.datasets import QMNIST

train_data = QMNIST(
    root="data",
    what="train"
)

test_data1 = QMNIST(
    root="data",
    what="test"
)

test_data2 = QMNIST(
    root="data",
    what="test10k"
)

test_data3 = QMNIST(
    root="data",
    what="test50k"
)

nist_data = QMNIST(
    root="data",
    what="nist"
)

import matplotlib.pyplot as plt

def show_images(data):
    plt.figure(figsize=(12, 2))
    col = 5
    for i, (image, label) in enumerate(data, 1):
        plt.subplot(1, col, i)
        plt.title(label)
        plt.imshow(image)
        if i == col:
            break
    plt.show()

show_images(data=train_data)
show_images(data=test_data1)
show_images(data=test_data2)
show_images(data=test_data3)
show_images(data=nist_data)

QMNIST in PyTorch

Das obige ist der detaillierte Inhalt vonQMNIST in PyTorch. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
So verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu findenSo verwenden Sie Python, um die ZiPF -Verteilung einer Textdatei zu findenMar 05, 2025 am 09:58 AM

Dieses Tutorial zeigt, wie man Python verwendet, um das statistische Konzept des Zipf -Gesetzes zu verarbeiten, und zeigt die Effizienz des Lesens und Sortierens großer Textdateien von Python bei der Bearbeitung des Gesetzes. Möglicherweise fragen Sie sich, was der Begriff ZiPF -Verteilung bedeutet. Um diesen Begriff zu verstehen, müssen wir zunächst das Zipf -Gesetz definieren. Mach dir keine Sorgen, ich werde versuchen, die Anweisungen zu vereinfachen. Zipf -Gesetz Das Zipf -Gesetz bedeutet einfach: In einem großen natürlichen Sprachkorpus erscheinen die am häufigsten vorkommenden Wörter ungefähr doppelt so häufig wie die zweiten häufigen Wörter, dreimal wie die dritten häufigen Wörter, viermal wie die vierten häufigen Wörter und so weiter. Schauen wir uns ein Beispiel an. Wenn Sie sich den Brown Corpus in amerikanischem Englisch ansehen, werden Sie feststellen, dass das häufigste Wort "Th ist

Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Wie benutze ich eine schöne Suppe, um HTML zu analysieren?Mar 10, 2025 pm 06:54 PM

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Bildfilterung in PythonBildfilterung in PythonMar 03, 2025 am 09:44 AM

Der Umgang mit lauten Bildern ist ein häufiges Problem, insbesondere bei Mobiltelefonen oder mit geringen Auflösungskamera-Fotos. In diesem Tutorial wird die Bildfilterungstechniken in Python unter Verwendung von OpenCV untersucht, um dieses Problem anzugehen. Bildfilterung: Ein leistungsfähiges Werkzeug Bildfilter

Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Wie führe ich ein tiefes Lernen mit Tensorflow oder Pytorch durch?Mar 10, 2025 pm 06:52 PM

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Einführung in die parallele und gleichzeitige Programmierung in PythonEinführung in die parallele und gleichzeitige Programmierung in PythonMar 03, 2025 am 10:32 AM

Python, ein Favorit für Datenwissenschaft und Verarbeitung, bietet ein reichhaltiges Ökosystem für Hochleistungs-Computing. Die parallele Programmierung in Python stellt jedoch einzigartige Herausforderungen dar. Dieses Tutorial untersucht diese Herausforderungen und konzentriert sich auf die globale Interprete

So implementieren Sie Ihre eigene Datenstruktur in PythonSo implementieren Sie Ihre eigene Datenstruktur in PythonMar 03, 2025 am 09:28 AM

Dieses Tutorial zeigt, dass eine benutzerdefinierte Pipeline -Datenstruktur in Python 3 erstellt wird, wobei Klassen und Bedienerüberladungen für verbesserte Funktionen genutzt werden. Die Flexibilität der Pipeline liegt in ihrer Fähigkeit, eine Reihe von Funktionen auf einen Datensatz GE anzuwenden

Serialisierung und Deserialisierung von Python -Objekten: Teil 1Serialisierung und Deserialisierung von Python -Objekten: Teil 1Mar 08, 2025 am 09:39 AM

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Mathematische Module in Python: StatistikMathematische Module in Python: StatistikMar 09, 2025 am 11:40 AM

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

AI Hentai Generator

AI Hentai Generator

Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

mPDF

mPDF

mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Dreamweaver Mac

Dreamweaver Mac

Visuelle Webentwicklungstools

Herunterladen der Mac-Version des Atom-Editors

Herunterladen der Mac-Version des Atom-Editors

Der beliebteste Open-Source-Editor

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung