GitHub: https://github.com/chatsapi/ChatsAPI
Bibliothek: https://pypi.org/project/chatsapi/
Künstliche Intelligenz hat die Industrie verändert, doch ihr effektiver Einsatz bleibt eine gewaltige Herausforderung. Komplexe Frameworks, langsame Reaktionszeiten und steile Lernkurven stellen sowohl für Unternehmen als auch für Entwickler Hürden dar. Hier kommt ChatsAPI ins Spiel – ein bahnbrechendes, leistungsstarkes KI-Agenten-Framework, das unübertroffene Geschwindigkeit, Flexibilität und Einfachheit bietet.
In diesem Artikel erfahren Sie, was ChatsAPI einzigartig macht, warum es bahnbrechend ist und wie es Entwicklern ermöglicht, intelligente Systeme mit beispielloser Leichtigkeit und Effizienz zu erstellen.
Was macht ChatsAPI einzigartig?
ChatsAPI ist nicht nur ein weiteres KI-Framework; Es ist eine Revolution in der KI-gesteuerten Interaktion. Hier ist der Grund:
- Unübertroffene Leistung ChatsAPI nutzt SBERT-Einbettungen, HNSWlib und BM25 Hybrid Search, um das schnellste Abfrageabgleichssystem bereitzustellen, das jemals entwickelt wurde.
Geschwindigkeit: Mit Reaktionszeiten von unter einer Millisekunde ist ChatsAPI das weltweit schnellste KI-Agent-Framework. Die von HNSWlib unterstützte Suche gewährleistet einen blitzschnellen Abruf von Routen und Wissen, selbst bei großen Datenmengen.
Effizienz: Der hybride Ansatz von SBERT und BM25 kombiniert semantisches Verständnis mit traditionellen Ranking-Systemen und gewährleistet so sowohl Geschwindigkeit als auch Genauigkeit.
Nahtlose Integration mit LLMs
ChatsAPI unterstützt hochmoderne Large Language Models (LLMs) wie OpenAI, Gemini, LlamaAPI und Ollama. Es vereinfacht die Komplexität der Integration von LLMs in Ihre Anwendungen, sodass Sie sich auf die Entwicklung besserer Erfahrungen konzentrieren können.Dynamische Routenanpassung
ChatsAPI nutzt Natural Language Understanding (NLU), um Benutzeranfragen dynamisch und mit beispielloser Präzision vordefinierten Routen zuzuordnen.
Registrieren Sie Routen mühelos mit Dekoratoren wie @trigger.
Verwenden Sie die Parameterextraktion mit @extract, um die Eingabeverarbeitung zu vereinfachen, egal wie komplex Ihr Anwendungsfall ist.
- Einfachheit im Design Wir glauben, dass Kraft und Einfachheit nebeneinander existieren können. Mit ChatsAPI können Entwickler in wenigen Minuten robuste KI-gesteuerte Systeme erstellen. Kein Ringen mehr mit komplizierten Setups oder Konfigurationen.
Die Vorteile von ChatsAPI
Hochleistungsabfrageverarbeitung
Herkömmliche KI-Systeme haben entweder mit Geschwindigkeit oder Genauigkeit zu kämpfen – ChatsAPI bietet beides. Ganz gleich, ob es darum geht, die beste Übereinstimmung in einer riesigen Wissensdatenbank zu finden oder große Mengen an Anfragen zu bearbeiten, ChatsAPI zeichnet sich aus.
Flexibles Framework
ChatsAPI passt sich jedem Anwendungsfall an, unabhängig davon, ob Sie Folgendes erstellen:
- Kundensupport-Chatbots.
- Intelligente Suchsysteme.
- KI-gestützte Assistenten für E-Commerce, Gesundheitswesen oder Bildung.
Entwickelt für Entwickler
ChatsAPI wurde von Entwicklern für Entwickler entwickelt und bietet:
- Schnellstart: Richten Sie Ihre Umgebung ein, definieren Sie Routen und gehen Sie in nur wenigen Schritten live.
- Anpassung: Passen Sie das Verhalten mit Dekorateuren an und passen Sie die Leistung an Ihre spezifischen Bedürfnisse an.
- Einfache LLM-Integration: Wechseln Sie mit minimalem Aufwand zwischen unterstützten LLMs wie OpenAI oder Gemini.
Wie funktioniert ChatsAPI?
Im Kern funktioniert ChatsAPI durch einen dreistufigen Prozess:
- Routen registrieren: Verwenden Sie den @trigger-Dekorator, um Routen zu definieren und sie Ihren Funktionen zuzuordnen.
- Suchen und Abgleichen: ChatsAPI verwendet SBERT-Einbettungen und die BM25-Hybridsuche, um Benutzereingaben dynamisch mit den richtigen Routen abzugleichen.
- Parameter extrahieren: Mit dem @extract-Dekorator extrahiert und validiert ChatsAPI automatisch Parameter und erleichtert so die Handhabung komplexer Eingaben.
Das Ergebnis? Ein System, das schnell, genau und unglaublich einfach zu bedienen ist.
Anwendungsfälle
Kundensupport
Automatisieren Sie Kundeninteraktionen mit blitzschneller Anfragelösung. ChatsAPI stellt sicher, dass Benutzer sofort relevante Antworten erhalten, was die Zufriedenheit erhöht und die Betriebskosten senkt.Wissensdatenbanksuche
Ermöglichen Sie Benutzern die Suche in umfangreichen Wissensdatenbanken mit semantischem Verständnis. Der hybride SBERT-BM25-Ansatz gewährleistet genaue, kontextbezogene Ergebnisse.Konversations-KI
Erstellen Sie dialogorientierte KI-Agenten, die Benutzereingaben in Echtzeit verstehen und sich daran anpassen. ChatsAPI lässt sich nahtlos in Top-LLMs integrieren, um natürliche, ansprechende Gespräche zu führen.
Warum sollte es Sie interessieren?
Andere Frameworks versprechen Flexibilität oder Leistung – aber keines kann beides so liefern wie ChatsAPI. Wir haben ein Framework erstellt, das:
- Schneller als alles andere auf dem Markt.
- Einfacher einzurichten und zu verwenden.
- Intelligenter, mit seiner einzigartigen Hybrid-Suchmaschine, die semantische und schlüsselwortbasierte Ansätze kombiniert.
ChatsAPI ermöglicht es Entwicklern, das volle Potenzial der KI auszuschöpfen, ohne sich mit Komplexität oder langsamer Leistung herumschlagen zu müssen.
So fangen Sie an
Der Einstieg in ChatsAPI ist einfach:
- Installieren Sie das Framework:
pip install chatsapi
- Definieren Sie Ihre Routen:
from chatsapi import ChatsAPI chat = ChatsAPI() @chat.trigger("Hello") async def greet(input_text): return "Hi there!"
- Extrahieren Sie einige Daten aus der Nachricht
from chatsapi import ChatsAPI chat = ChatsAPI() @chat.trigger("Need help with account settings.") @chat.extract([ ("account_number", "Account number (a nine digit number)", int, None), ("holder_name", "Account holder's name (a person name)", str, None) ]) async def account_help(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} Run your message (with no LLM) @app.post("/chat") async def message(request: RequestModel, response: Response): reply = await chat.run(request.message) return {"message": reply}
- Gespräche (mit LLM) – Vollständiges Beispiel
import os from dotenv import load_dotenv from fastapi import FastAPI, Request, Response from pydantic import BaseModel from chatsapi.chatsapi import ChatsAPI # Load environment variables from .env file load_dotenv() app = FastAPI() # instantiate FastAPI or your web framework chat = ChatsAPI( # instantiate ChatsAPI llm_type="gemini", llm_model="models/gemini-pro", llm_api_key=os.getenv("GOOGLE_API_KEY"), ) # chat trigger - 1 @chat.trigger("Want to cancel a credit card.") @chat.extract([("card_number", "Credit card number (a 12 digit number)", str, None)]) async def cancel_credit_card(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} # chat trigger - 2 @chat.trigger("Need help with account settings.") @chat.extract([ ("account_number", "Account number (a nine digit number)", int, None), ("holder_name", "Account holder's name (a person name)", str, None) ]) async def account_help(chat_message: str, extracted: dict): return {"message": chat_message, "extracted": extracted} # request model class RequestModel(BaseModel): message: str # chat conversation @app.post("/chat") async def message(request: RequestModel, response: Response, http_request: Request): session_id = http_request.cookies.get("session_id") reply = await chat.conversation(request.message, session_id) return {"message": f"{reply}"} # set chat session @app.post("/set-session") def set_session(response: Response): session_id = chat.set_session() response.set_cookie(key="session_id", value=session_id) return {"message": "Session set"} # end chat session @app.post("/end-session") def end_session(response: Response, http_request: Request): session_id = http_request.cookies.get("session_id") chat.end_session(session_id) response.delete_cookie("session_id") return {"message": "Session ended"}
- Routen, die LLM-Abfragen einhalten – Einzelabfrage
await chat.query(request.message)
Benchmarks
Herkömmliche LLM (API)-basierte Methoden dauern in der Regel etwa vier Sekunden pro Anfrage. Im Gegensatz dazu verarbeitet ChatsAPI Anfragen in weniger als einer Sekunde, oft innerhalb von Millisekunden, ohne LLM-API-Aufrufe durchzuführen.
Durchführung einer Chat-Routing-Aufgabe innerhalb von 472 ms (kein Cache)
Durchführung einer Chat-Routing-Aufgabe innerhalb von 21 ms (nach dem Cache)
Durchführung einer Chat-Routing-Datenextraktionsaufgabe innerhalb von 862 ms (kein Cache)
Demonstration seiner Konversationsfähigkeiten mit der WhatsApp Cloud API
ChatsAPI – Funktionshierarchie
ChatsAPI ist mehr als nur ein Framework; Es ist ein Paradigmenwechsel in der Art und Weise, wie wir KI-Systeme aufbauen und mit ihnen interagieren. Durch die Kombination von Geschwindigkeit, Genauigkeit und Benutzerfreundlichkeit setzt ChatsAPI einen neuen Maßstab für KI-Agent-Frameworks.
Schließen Sie sich noch heute der Revolution an und erfahren Sie, warum ChatsAPI die KI-Landschaft verändert.
Bereit zum Eintauchen? Starten Sie jetzt mit ChatsAPI und erleben Sie die Zukunft der KI-Entwicklung.
Das obige ist der detaillierte Inhalt vonChatsAPI – Das weltweit schnellste KI-Agent-Framework. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Lösung für Erlaubnisprobleme beim Betrachten der Python -Version in Linux Terminal Wenn Sie versuchen, die Python -Version in Linux Terminal anzuzeigen, geben Sie Python ein ...

In diesem Artikel wird erklärt, wie man schöne Suppe, eine Python -Bibliothek, verwendet, um HTML zu analysieren. Es beschreibt gemeinsame Methoden wie find (), find_all (), select () und get_text () für die Datenextraktion, die Behandlung verschiedener HTML -Strukturen und -Anternativen (SEL)

Serialisierung und Deserialisierung von Python-Objekten sind Schlüsselaspekte eines nicht trivialen Programms. Wenn Sie etwas in einer Python -Datei speichern, führen Sie eine Objektserialisierung und Deserialisierung durch, wenn Sie die Konfigurationsdatei lesen oder auf eine HTTP -Anforderung antworten. In gewisser Weise sind Serialisierung und Deserialisierung die langweiligsten Dinge der Welt. Wen kümmert sich um all diese Formate und Protokolle? Sie möchten einige Python -Objekte bestehen oder streamen und sie zu einem späteren Zeitpunkt vollständig abrufen. Dies ist eine großartige Möglichkeit, die Welt auf konzeptioneller Ebene zu sehen. Auf praktischer Ebene können das von Ihnen ausgewählte Serialisierungsschema, Format oder Protokoll jedoch die Geschwindigkeit, Sicherheit, den Status der Wartungsfreiheit und andere Aspekte des Programms bestimmen

Dieser Artikel vergleicht TensorFlow und Pytorch für Deep Learning. Es beschreibt die beteiligten Schritte: Datenvorbereitung, Modellbildung, Schulung, Bewertung und Bereitstellung. Wichtige Unterschiede zwischen den Frameworks, insbesondere bezüglich des rechnerischen Graps

Das Statistikmodul von Python bietet leistungsstarke Datenstatistikanalysefunktionen, mit denen wir die allgemeinen Merkmale von Daten wie Biostatistik und Geschäftsanalyse schnell verstehen können. Anstatt Datenpunkte nacheinander zu betrachten, schauen Sie sich nur Statistiken wie Mittelwert oder Varianz an, um Trends und Merkmale in den ursprünglichen Daten zu ermitteln, die möglicherweise ignoriert werden, und vergleichen Sie große Datensätze einfacher und effektiv. In diesem Tutorial wird erläutert, wie der Mittelwert berechnet und den Grad der Dispersion des Datensatzes gemessen wird. Sofern nicht anders angegeben, unterstützen alle Funktionen in diesem Modul die Berechnung der Mittelwert () -Funktion, anstatt einfach den Durchschnitt zu summieren. Es können auch schwimmende Punktzahlen verwendet werden. zufällig importieren Statistiken importieren Aus Fracti

Dieses Tutorial baut auf der vorherigen Einführung in die schöne Suppe auf und konzentriert sich auf DOM -Manipulation über die einfache Baumnavigation hinaus. Wir werden effiziente Suchmethoden und -techniken zur Änderung der HTML -Struktur untersuchen. Eine gemeinsame DOM -Suchmethode ist Ex

In dem Artikel werden beliebte Python-Bibliotheken wie Numpy, Pandas, Matplotlib, Scikit-Learn, TensorFlow, Django, Flask und Anfragen erörtert, die ihre Verwendung in wissenschaftlichen Computing, Datenanalyse, Visualisierung, maschinellem Lernen, Webentwicklung und h beschreiben

Dieser Artikel führt die Python-Entwickler in den Bauen von CLIS-Zeilen-Schnittstellen (CLIS). Es werden mit Bibliotheken wie Typer, Click und ArgParse beschrieben, die Eingabe-/Ausgabemedelung betonen und benutzerfreundliche Designmuster für eine verbesserte CLI-Usabilität fördern.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

mPDF
mPDF ist eine PHP-Bibliothek, die PDF-Dateien aus UTF-8-codiertem HTML generieren kann. Der ursprüngliche Autor, Ian Back, hat mPDF geschrieben, um PDF-Dateien „on the fly“ von seiner Website auszugeben und verschiedene Sprachen zu verarbeiten. Es ist langsamer und erzeugt bei der Verwendung von Unicode-Schriftarten größere Dateien als Originalskripte wie HTML2FPDF, unterstützt aber CSS-Stile usw. und verfügt über viele Verbesserungen. Unterstützt fast alle Sprachen, einschließlich RTL (Arabisch und Hebräisch) und CJK (Chinesisch, Japanisch und Koreanisch). Unterstützt verschachtelte Elemente auf Blockebene (wie P, DIV),

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Sicherer Prüfungsbrowser
Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.