


Ausreißer in einem Pandas-Datenrahmen mithilfe von Standardabweichungen erkennen und ausschließen
Ausreißer sind Datenpunkte, die erheblich vom Rest der Daten in einem abweichen Verteilung. Das Identifizieren und Ausschließen von Ausreißern kann die Datenanalyse verbessern, indem verzerrte oder verrauschte Beobachtungen entfernt werden. Pandas bietet mehrere Methoden zum Umgang mit Ausreißern, einschließlich der Verwendung von Standardabweichungen.
Um Zeilen mit Werten auszuschließen, die eine bestimmte Anzahl von Standardabweichungen vom Mittelwert überschreiten, können wir die Funktion scipy.stats.zscore verwenden. Diese Funktion berechnet den Z-Score für jeden Datenpunkt und stellt die Anzahl der Standardabweichungen dar, um die er vom Mittelwert abweicht.
import pandas as pd import numpy as np from scipy import stats # Create a sample dataframe df = pd.DataFrame({'Vol': [1200, 1230, 1250, 1210, 4000]}) # Calculate Z-score for the 'Vol' column zscores = stats.zscore(df['Vol']) # Exclude rows with Z-score greater than 3 filtered_df = df[np.abs(zscores) <p>Dieser Ansatz erkennt und schließt Ausreißer speziell in der Spalte „Vol“ aus. Für mehr Flexibilität können wir diesen Filter auf mehrere Spalten gleichzeitig anwenden:</p><pre class="brush:php;toolbar:false"># Calculate Z-scores for all columns zscores = stats.zscore(df) # Exclude rows with any column Z-score greater than 3 filtered_df = df[(np.abs(zscores) <p>Durch Anpassen des Schwellenwerts (in diesem Fall 3) können wir den Grad des Ausschlusses von Ausreißern steuern. Ein kleinerer Schwellenwert führt zu einer konservativeren Ausreißererkennung, während ein größerer Schwellenwert mehr potenzielle Ausreißer ausschließt.</p><p>Mit diesem Ansatz können wir Ausreißer effektiv identifizieren und entfernen, die die Analyse unseres Pandas DataFrame verzerren könnten.</p>
Das obige ist der detaillierte Inhalt vonWie kann ich Ausreißer in einem Pandas-DataFrame mithilfe von Standardabweichungen erkennen und ausschließen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

NumpyisessentialfornumericalComputingInpythonduetoitsSpeed, GedächtnisEffizienz und kompetentiertemaMatematical-Funktionen.1) ITSFACTBECAUSPERFORMATIONSOPERATIONS.2) NumpyarraysSaremoremory-Effecthonpythonlists.3) iTofferSAgyarraysAremoremory-Effizieren

ContInuuousMemoryAllocationScrucialforAraysBecauseAltoLowsFofficy und Fastelement Access.1) iTenablesconstantTimeAccess, O (1), Duetodirectaddresscalculation.2) itimProvesefficienceByallowing -MultipleTeLementFetchesperCacheline.3) Es wird gestellt

SlicingPapythonListisDoneUsingthesyntaxlist [Start: Stop: Stufe] .here'Showitworks: 1) StartIndexoFtheFirstelementtoinclude.2) stopiStheIndexoFtheFirstelementtoexclude.3) StepisTheincrementBetweenelesfulFulForForforexcractioningPorporionsporporionsPorporionsporporesporsporsporsporsporsporsporsporsporionsporsPorsPorsPorsPorsporsporsporsporsporsporsAntionsporsporesporesporesporsPorsPorsporsPorsPorsporsporspors,

Numpyallowsforvariousoperationssonarrays: 1) BasicarithmeticliKeaddition, Subtraktion, Multiplikation und Division; 2) AdvancedoperationssuchasmatrixMultiplication;

Arraysinpython, insbesondere ThroughNumpyandpandas, areessentialfordataanalyse, öfterspeedandeffizienz.1) numpyarraysenableAnalysHandlingoflargedatasets und CompompexoperationslikemovingAverages.2) Pandasextendsnumpy'ScapaBilitiesWithDaTataforsForstruc


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

Dreamweaver Mac
Visuelle Webentwicklungstools

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SublimeText3 Englische Version
Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.
