


Mehrere Prozesse über Pipes mit subprocess.Popen verbinden
In diesem Szenario möchten Sie einen Shell-Befehl mithilfe des Subprocess-Moduls ausführen und dabei drei Befehle verbinden: echo, awk , sortieren und ihre Ausgabe an eine Ausgabedatei weiterleiten.
echo "input data" | awk -f script.awk | sort > outfile.txt
Mit subprocess.Popen können Sie haben:
import subprocess p_awk = subprocess.Popen(["awk","-f","script.awk"], stdin=subprocess.PIPE, stdout=file("outfile.txt", "w")) p_awk.communicate( "input data" )
Während sich diese Lösung mit der Verrohrung von awk zum Sortieren befasst, übersieht sie einen wichtigen Gesichtspunkt:
Eliminierung von Awk und Pipes
Wie in der akzeptierten Antwort vorgeschlagen, ist es vorteilhafter, das neu zu schreiben, anstatt awk und Pipes zu verwenden script.awk in Python. Dadurch entfallen awk, die Pipeline und die Notwendigkeit einer komplexen Unterprozessbehandlung.
Vorteile der Nur-Python-Verarbeitung
Durch die Ausführung aller Vorgänge innerhalb von Python profitieren Sie mehrere Vorteile:
- Keine Notwendigkeit für Zwischenschritte (z. B. awk), die Komplexität und Potenzial erhöhen Probleme.
- Beseitigung potenzieller Parallelitätsengpässe, die durch Pipes verursacht werden.
- Vereinfachter Code, wodurch die Notwendigkeit der Verarbeitung mehrerer Unterprozesse entfällt.
- Verwendung einer einzigen Programmiersprache, wodurch der Bedarf reduziert wird um verschiedene Sprachkonstrukte zu verstehen.
- Verbesserte Klarheit und Wartbarkeit der Code.
Vermeiden der Komplexität von Pipelines
Das Erstellen von Pipelines in der Shell erfordert mehrere Forks und Dateideskriptormanipulationen. Während es in Python mithilfe von Low-Level-APIs möglich ist, ist es weitaus einfacher, die Pipeline-Erstellung an die Shell zu delegieren, indem:
awk_sort = subprocess.Popen( "awk -f script.awk | sort > outfile.txt", stdin=subprocess.PIPE, shell=True ) awk_sort.communicate( b"input data\n" )
Dieser Ansatz verwendet die Shell als Vermittler zum Erstellen der Pipeline und vereinfacht so den Python-Code.
Das obige ist der detaillierte Inhalt vonWie kann ich mehrere Prozesse in Python effizient verbinden und komplexe Rohrleitungen mit „subprocess.Popen' vermeiden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

ARRAYSAREGENERARYMOREMORY-effizientesThanlistsforstoringNumericalDataduetototototheirfixed-SizenReanddirectMemoryAccess.1) ArraysStoreElementsInacontuTouNDdirectMemoryAccess.

ToconvertapythonListtoanArray, UsethearrayModule: 1) ImportThearrayModule, 2) Kreatelist, 3) Usearray (Typcode, Liste) Toconvertit, spezifizieren thetypecodelik'i'i'i'i'i'i'i'i'Itingers.ThiskonversionoptimizesMorySageForHomoGeenousData, EnhancingIntationSerance -Formance -FormanceConconcompomp

Python -Listen können verschiedene Arten von Daten speichern. Die Beispielliste enthält Ganzzahlen, Saiten, schwimmende Punktzahlen, Boolesche, verschachtelte Listen und Wörterbücher. Die Listenflexibilität ist bei der Datenverarbeitung und -prototypung wertvoll, muss jedoch mit Vorsicht verwendet werden, um die Lesbarkeit und Wartbarkeit des Codes sicherzustellen.

Pythondoesnothavebuilt-In-In-In-In-Grad; UsethearraymoduleformemoryeffizientHomogenousDatastorage, whilelistareversatileformixedDatatypes

ThemostcommonlyusedModuleforcreatreatraysinpythonisnumpy.1) NumpyprovideseffictionToolsforArrayoperationen, IdealfornicericalData.2) ArraysCanbesedusednp.Array () for1dand2dstructures.3) numpyexcelsusingnp.Array () und -Antenoperationen

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heißer Artikel

Heiße Werkzeuge

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

PHPStorm Mac-Version
Das neueste (2018.2.1) professionelle, integrierte PHP-Entwicklungstool

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.
