suchen
HeimBackend-EntwicklungPython-TutorialWie erreicht das „range()'-Objekt von Python 3 schnelle Eindämmungsprüfungen?

How Does Python 3's `range()` Object Achieve Fast Containment Checks?

Schnelle Einschlussprüfungen in Python 3 range()-Objekt

Die Funktion range() in Python 3 scheint rechenintensiv zu sein, wie es scheint um die Mitgliedschaft in einem breiten Spektrum zu prüfen. Es arbeitet jedoch auf eine optimierte Art und Weise, die dieser Erwartung widerspricht.

Unter der Haube verwendet range() ein intelligentes Sequenzobjekt, das eine Vorabberechnung seines gesamten Inhalts vermeidet. Stattdessen speichert es die Start-, Stopp- und Schrittwerte und berechnet die Zahlen bei Bedarf während der Iteration.

Entscheidend ist, dass das range()-Objekt den Hook contains implementiert, um die Mitgliedschaft effizient zu berechnen, ohne sie zu scannen potenzielle Werte. Diese nahezu konstante Zeitoperation vermeidet die Notwendigkeit, jede Ganzzahl im Bereich zu durchlaufen.

Betrachten Sie zur Veranschaulichung eine benutzerdefinierte Bereichsimplementierung:

class my_range:
    # Constructor with start, stop, and step values
    def __init__(self, start, stop, step):
        self.start = start
        self.stop = stop
        self.step = step

    # Generator for iterating through the range
    def __iter__(self):
        current = self.start
        if self.step  self.stop:
                yield current
                current += self.step
        else:
            while current <p>Dieser benutzerdefinierten Implementierung fehlen mehrere Funktionen von Python range()-Objekt, das die optimierte Natur des letzteren demonstriert. Das range()-Objekt verwaltet den Speicher effizient und führt Einschlussprüfungen ohne großen Rechenaufwand durch, was es zu einem robusten und schnellen Werkzeug für die Arbeit mit Bereichen macht.</p>

Das obige ist der detaillierte Inhalt vonWie erreicht das „range()'-Objekt von Python 3 schnelle Eindämmungsprüfungen?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie können Sie Elemente an eine Python -Liste anhängen?Wie können Sie Elemente an eine Python -Liste anhängen?May 04, 2025 am 12:17 AM

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.May 04, 2025 am 12:16 AM

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.May 04, 2025 am 12:11 AM

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.

Wie erstellt man ein Python -Array? Geben Sie ein Beispiel an.Wie erstellt man ein Python -Array? Geben Sie ein Beispiel an.May 04, 2025 am 12:10 AM

PythonarraysSureScreeatedusedhearrayModule, nicht gebaute Inlikelisten.1) ImportThearrayModule.2) Spezifizieren Sie die THETYPECODE, z.

Was sind einige Alternativen zur Verwendung einer Shebang -Linie, um den Python -Dolmetscher anzugeben?Was sind einige Alternativen zur Verwendung einer Shebang -Linie, um den Python -Dolmetscher anzugeben?May 04, 2025 am 12:07 AM

Zusätzlich zur Shebang -Linie gibt es viele Möglichkeiten, einen Python -Interpreter anzugeben: 1. Verwenden Sie Python -Befehle direkt aus der Befehlszeile; 2. Verwenden Sie Stapeldateien oder Shell -Skripte. 3.. Verwenden Sie Build -Tools wie Make oder CMake; 4. Verwenden Sie Aufgabenläufer wie Invoke. Jede Methode hat ihre Vor- und Nachteile, und es ist wichtig, die Methode auszuwählen, die den Anforderungen des Projekts entspricht.

Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?May 03, 2025 am 12:11 AM

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.May 03, 2025 am 12:10 AM

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Wie geben Sie den Datentyp der Elemente in einem Python -Array an?Wie geben Sie den Datentyp der Elemente in einem Python -Array an?May 03, 2025 am 12:06 AM

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

SublimeText3 chinesische Version

SublimeText3 chinesische Version

Chinesische Version, sehr einfach zu bedienen

WebStorm-Mac-Version

WebStorm-Mac-Version

Nützliche JavaScript-Entwicklungstools

SublimeText3 Englische Version

SublimeText3 Englische Version

Empfohlen: Win-Version, unterstützt Code-Eingabeaufforderungen!

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version