


Doppelwertvergleich in Java: Präzisionsfehler beheben
Der Vergleich doppelter Werte in Java kann aufgrund möglicher Präzisionsfehler eine knifflige Aufgabe sein. Ein einfacher Vergleich, wie der unten gezeigte, kann zu unerwarteten Ergebnissen führen:
double a = 1.000001; double b = 0.000001; boolean result = (a - b == 1.0); // False
Dieser Code gibt „falsch“ aus, da die Subtraktionsoperation 0,9999999999999999 ergibt, was nicht unbedingt 1,0 entspricht. Um dieses Problem zu lösen, benötigen wir eine präzisere Vergleichsmethode.
Ein Ansatz besteht darin, die absolute Differenz zwischen den beiden Werten zu berechnen und sie mit einem kleinen Toleranzwert zu vergleichen. Beispiel:
double c = Math.abs(a - b - 1.0); boolean result = (c <p>Dieser Code führt eine Toleranz von 0,000001 ein. Solange also die absolute Differenz zwischen c und 1,0 innerhalb dieses Bereichs liegt, wird der Vergleich als wahr ausgewertet. Die Math.abs()-Methode stellt sicher, dass der Absolutwert berücksichtigt wird und etwaige Vorzeichenunterschiede außer Acht gelassen werden.</p><p>Durch die Verwendung dieser Technik können wir mögliche Präzisionsfehler berücksichtigen und zuverlässige Vergleiche doppelter Werte durchführen. Dieser Ansatz ist besonders nützlich, wenn mit Gleitkommadaten gearbeitet wird, bei denen genaue Gleichheitsvergleiche nicht immer praktikabel sind.</p>
Das obige ist der detaillierte Inhalt vonWie kann man Doppelwerte in Java zuverlässig vergleichen und Genauigkeitsfehler vermeiden?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Dieser Artikel analysiert 2025 die vier besten JavaScript -Frameworks (React, Angular, Vue, Svelte) und verglichen ihre Leistung, Skalierbarkeit und Zukunftsaussichten. Während alle aufgrund starker Gemeinschaften und Ökosysteme dominant bleiben, sind ihr relatives Popul

Dieser Artikel befasst sich mit der Verwundbarkeit von CVE-2022-1471 in Snakeyaml, einem kritischen Fehler, der die Ausführung von Remote-Code ermöglicht. Es wird beschrieben

Node.js 20 verbessert die Leistung durch V8 -Motorverbesserungen erheblich, insbesondere durch schnellere Müllsammlung und E/A. Zu den neuen Funktionen gehören eine bessere Support von WebAssembly und raffinierte Debugging -Tools, die Produktivität der Entwickler und die Anwendungsgeschwindigkeit.

In dem Artikel wird in der Implementierung von mehrstufigem Caching in Java mithilfe von Koffein- und Guava-Cache zur Verbesserung der Anwendungsleistung erläutert. Es deckt die Einrichtungs-, Integrations- und Leistungsvorteile sowie die Bestrafung des Konfigurations- und Räumungsrichtlinienmanagements ab

Mit der Klassenbelastung von Java wird das Laden, Verknüpfen und Initialisieren von Klassen mithilfe eines hierarchischen Systems mit Bootstrap-, Erweiterungs- und Anwendungsklassenloadern umfasst. Das übergeordnete Delegationsmodell stellt sicher

In diesem Artikel werden Methoden zum Austausch von Daten zwischen Gurkenschritten und dem Vergleich des Szenario -Kontextes, globalen Variablen, Argumentenübergabe und Datenstrukturen untersucht. Es betont Best Practices für Wartbarkeit, einschließlich präziser Kontextgebrauch, beschreibend

In diesem Artikel wird die Integration der funktionalen Programmierung in Java unter Verwendung von Lambda -Ausdrücken, Streams -API, Methodenreferenzen und optional untersucht. Es zeigt Vorteile wie eine verbesserte Lesbarkeit der Code und die Wartbarkeit durch SUKTIVE UND VERUSNAHMETALITÄT

Iceberg, ein offenes Tabellenformat für große analytische Datensätze, verbessert die Leistung und Skalierbarkeit von Data Lake. Es befasst sich mit Einschränkungen von Parquet/ORC durch internes Metadatenmanagement und ermöglicht eine effiziente Schemaentwicklung, Zeitreisen, gleichzeitiger W


Heiße KI -Werkzeuge

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool
Ausziehbilder kostenlos

Clothoff.io
KI-Kleiderentferner

AI Hentai Generator
Erstellen Sie kostenlos Ai Hentai.

Heißer Artikel

Heiße Werkzeuge

SecLists
SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

MinGW – Minimalistisches GNU für Windows
Dieses Projekt wird derzeit auf osdn.net/projects/mingw migriert. Sie können uns dort weiterhin folgen. MinGW: Eine native Windows-Portierung der GNU Compiler Collection (GCC), frei verteilbare Importbibliotheken und Header-Dateien zum Erstellen nativer Windows-Anwendungen, einschließlich Erweiterungen der MSVC-Laufzeit zur Unterstützung der C99-Funktionalität. Die gesamte MinGW-Software kann auf 64-Bit-Windows-Plattformen ausgeführt werden.

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

SAP NetWeaver Server-Adapter für Eclipse
Integrieren Sie Eclipse mit dem SAP NetWeaver-Anwendungsserver.

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung
