suchen
HeimBackend-EntwicklungPython-TutorialWie erstelle ich eine neue Rassenbezeichnungsspalte in Pandas basierend auf mehreren Ethnizitätsspalten?

How to Create a New Race Label Column in Pandas Based on Multiple Ethnicity Columns?

Erstellen einer neuen Spalte basierend auf Werten aus mehreren Spalten mithilfe einer Funktion in Pandas

Bei der Arbeit mit Datenrahmen in Pandas kann es erforderlich sein, eine neue Spalte basierend auf zu erstellen Werte aus mehreren vorhandenen Spalten. Ein häufiges Szenario entsteht, wenn eine benutzerdefinierte Funktion zeilenweise auf eine Reihe von Spalten angewendet werden muss, um die Werte der neuen Spalte zu bestimmen.

Beispielszenario

Betrachten Sie den folgenden Datenrahmen mit sechs auf die ethnische Zugehörigkeit bezogenen Daten Indikatorspalten:

df = pd.DataFrame({
    'ERI_Hispanic': [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
    'ERI_AmerInd_AKNatv': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'ERI_Asian': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
    'ERI_Black_Afr.Amer': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    'ERI_HI_PacIsl': [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
    'ERI_White': [1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
})

Das Ziel besteht darin, eine neue Spalte mit dem Namen „race_label“ zu erstellen, die jede Zeile basierend auf Folgendem klassifiziert Kriterien:

  1. Wenn ERI_Hispanic gleich 1 ist, geben Sie „Hispanic“ zurück.
  2. Wenn die Summe aller nicht-hispanischen ERI-Spalten (ERI_AmerInd_AKNatv, ERI_Asian, ERI_Black_Afr.Amer, ERI_HI_PacIsl und ERI_White ) größer als 1 ist, geben Sie „Zwei“ zurück oder mehr".
  3. Für jeden anderen Wert ungleich Null in den ERI-Spalten geben Sie die entsprechende Rassenbezeichnung zurück (z. B. „A/I AK Native“, „Asian“, „Black/AA“, „Haw“) /Pac Isl.“ oder „White“).

Lösung

Die Lösung umfasst zwei Schritte: Erstellen einer benutzerdefinierten Funktion zur Durchführung der Klassifizierung und Anwenden der Funktion zeilenweise zum Datenrahmen hinzufügen.

1. Definieren der benutzerdefinierten Funktion

def label_race(row):
    if row['ERI_Hispanic'] == 1:
        return 'Hispanic'
    elif row['ERI_AmerInd_AKNatv'] + row['ERI_Asian'] + row['ERI_Black_Afr.Amer'] + row['ERI_HI_PacIsl'] + row['ERI_White'] > 1:
        return 'Two or More'
    elif row['ERI_AmerInd_AKNatv'] == 1:
        return 'A/I AK Native'
    elif row['ERI_Asian'] == 1:
        return 'Asian'
    elif row['ERI_Black_Afr.Amer'] == 1:
        return 'Black/AA'
    elif row['ERI_HI_PacIsl'] == 1:
        return 'Haw/Pac Isl.'
    elif row['ERI_White'] == 1:
        return 'White'
    else:
        return 'Other'

Diese Funktion verwendet eine Zeile des Datenrahmens als Eingabe und gibt die entsprechende Rassenbezeichnung basierend auf den bereitgestellten Kriterien zurück.

2. Anwenden der Funktion auf den Datenrahmen

Um die neue Spalte „race_label“ zu erstellen, verwenden Sie die Funktion apply() zusammen mit dem Parameter axis=1, um die Funktion label_race auf jede Zeile des Datenrahmens anzuwenden.

df['race_label'] = df.apply(label_race, axis=1)

Der resultierende Datenrahmen mit der neuen Spalte wird unten angezeigt:

    ERI_Hispanic  ERI_AmerInd_AKNatv  ERI_Asian  ERI_Black_Afr.Amer  ERI_HI_PacIsl  ERI_White  \
0             0                  0         0                     0             0          1   
1             1                  0         0                     0             0          0   
2             0                  0         0                     0             0          1   
3             0                  0         0                     0             0          1   
4             0                  0         0                     0             0          0   
5             0                  0         0                     0             0          1   
6             0                  0         1                     0             0          1   
7             0                  0         0                     0             1          1   
8             0                  0         0                     1             0          0   
9             0                  0         0                     0             0          1   

     race_label  
0         White  
1      Hispanic  
2         White  
3         White  
4         Other  
5         White  
6   Two or More  
7         White  
8  Haw/Pac Isl.  
9         White  

Das obige ist der detaillierte Inhalt vonWie erstelle ich eine neue Rassenbezeichnungsspalte in Pandas basierend auf mehreren Ethnizitätsspalten?. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Stellungnahme
Der Inhalt dieses Artikels wird freiwillig von Internetnutzern beigesteuert und das Urheberrecht liegt beim ursprünglichen Autor. Diese Website übernimmt keine entsprechende rechtliche Verantwortung. Wenn Sie Inhalte finden, bei denen der Verdacht eines Plagiats oder einer Rechtsverletzung besteht, wenden Sie sich bitte an admin@php.cn
Wie können Sie Elemente an eine Python -Liste anhängen?Wie können Sie Elemente an eine Python -Liste anhängen?May 04, 2025 am 12:17 AM

ToAppendElementStoapythonList, UsTheAppend () methodForsingleElelements, Extend () FormultipleElements, und INSERSt () FORSPECIFIFICEPosition.1) UseAppend () ForaddingOneElementattheend.2) usextend () toaddmultiElementsefficction.3) useInsert () toaddanelementataspeci

Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.Wie erstellt man eine Python -Liste? Geben Sie ein Beispiel an.May 04, 2025 am 12:16 AM

TocreateApythonList, usequarebrackets [] andsparateItemswithcommas.1) ListaredynamicandcanholdmixedDatatypes.2) UseAppend (), REME () und SSLICINGFORMIPLUMILATION.3) LISTCOMPRAUMENS

Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.Diskutieren Sie reale Anwendungsfälle, in denen eine effiziente Speicherung und Verarbeitung numerischer Daten von entscheidender Bedeutung ist.May 04, 2025 am 12:11 AM

In den Bereichen Finanzen, wissenschaftliche Forschung, medizinische Versorgung und KI ist es entscheidend, numerische Daten effizient zu speichern und zu verarbeiten. 1) In der Finanzierung kann die Verwendung von Speicherzuordnungsdateien und Numpy -Bibliotheken die Datenverarbeitungsgeschwindigkeit erheblich verbessern. 2) Im Bereich der wissenschaftlichen Forschung sind HDF5 -Dateien für die Datenspeicherung und -abnahme optimiert. 3) In der medizinischen Versorgung verbessern die Datenbankoptimierungstechnologien wie die Indexierung und die Partitionierung die Leistung der Datenabfrage. 4) In AI beschleunigen Daten, die Sharding und das verteilte Training beschleunigen, Modelltraining. Die Systemleistung und Skalierbarkeit können erheblich verbessert werden, indem die richtigen Tools und Technologien ausgewählt und Kompromisse zwischen Speicher- und Verarbeitungsgeschwindigkeiten abgewogen werden.

Wie erstellt man ein Python -Array? Geben Sie ein Beispiel an.Wie erstellt man ein Python -Array? Geben Sie ein Beispiel an.May 04, 2025 am 12:10 AM

PythonarraysSureScreeatedusedhearrayModule, nicht gebaute Inlikelisten.1) ImportThearrayModule.2) Spezifizieren Sie die THETYPECODE, z.

Was sind einige Alternativen zur Verwendung einer Shebang -Linie, um den Python -Dolmetscher anzugeben?Was sind einige Alternativen zur Verwendung einer Shebang -Linie, um den Python -Dolmetscher anzugeben?May 04, 2025 am 12:07 AM

Zusätzlich zur Shebang -Linie gibt es viele Möglichkeiten, einen Python -Interpreter anzugeben: 1. Verwenden Sie Python -Befehle direkt aus der Befehlszeile; 2. Verwenden Sie Stapeldateien oder Shell -Skripte. 3.. Verwenden Sie Build -Tools wie Make oder CMake; 4. Verwenden Sie Aufgabenläufer wie Invoke. Jede Methode hat ihre Vor- und Nachteile, und es ist wichtig, die Methode auszuwählen, die den Anforderungen des Projekts entspricht.

Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?Wie wirkt sich die Auswahl zwischen Listen und Arrays auf die Gesamtleistung einer Python -Anwendung aus, die sich mit großen Datensätzen befasst?May 03, 2025 am 12:11 AM

ForHandlinglargedatasetsinpython, Usenumpyarraysforbetterperformance.1) Numpyarraysarememory-Effiction und FasterFornumericaloperations.2) meidenunnötiger Anbieter.3) HebelVectorisationFecedTimeComplexity.4) ManagemememoryusageSageWithEffizienceDeffictureWitheseffizienz

Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.Erklären Sie, wie das Speicher für Listen gegenüber Arrays in Python zugewiesen wird.May 03, 2025 am 12:10 AM

Inpython, listEUSUutsynamicMemoryAllocationWithover-Accocation, whilenumpyarraysalcodeFixedMemory.1) ListSallocatemoremoryThanneded intellig, vereitelte, dass die sterbliche Größe von Zeitpunkte, OfferingPredictableSageStoageStloseflexeflexibilität.

Wie geben Sie den Datentyp der Elemente in einem Python -Array an?Wie geben Sie den Datentyp der Elemente in einem Python -Array an?May 03, 2025 am 12:06 AM

Inpython, youcansspecthedatatypeyFelemeremodelerernspant.1) Usenpynernrump.1) Usenpynerp.dloatp.Ploatm64, Formor -Präzise -Preciscontrolatatypen.

See all articles

Heiße KI -Werkzeuge

Undresser.AI Undress

Undresser.AI Undress

KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover

AI Clothes Remover

Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Undress AI Tool

Undress AI Tool

Ausziehbilder kostenlos

Clothoff.io

Clothoff.io

KI-Kleiderentferner

Video Face Swap

Video Face Swap

Tauschen Sie Gesichter in jedem Video mühelos mit unserem völlig kostenlosen KI-Gesichtstausch-Tool aus!

Heiße Werkzeuge

Notepad++7.3.1

Notepad++7.3.1

Einfach zu bedienender und kostenloser Code-Editor

Sicherer Prüfungsbrowser

Sicherer Prüfungsbrowser

Safe Exam Browser ist eine sichere Browserumgebung für die sichere Teilnahme an Online-Prüfungen. Diese Software verwandelt jeden Computer in einen sicheren Arbeitsplatz. Es kontrolliert den Zugriff auf alle Dienstprogramme und verhindert, dass Schüler nicht autorisierte Ressourcen nutzen.

SecLists

SecLists

SecLists ist der ultimative Begleiter für Sicherheitstester. Dabei handelt es sich um eine Sammlung verschiedener Arten von Listen, die häufig bei Sicherheitsbewertungen verwendet werden, an einem Ort. SecLists trägt dazu bei, Sicherheitstests effizienter und produktiver zu gestalten, indem es bequem alle Listen bereitstellt, die ein Sicherheitstester benötigen könnte. Zu den Listentypen gehören Benutzernamen, Passwörter, URLs, Fuzzing-Payloads, Muster für vertrauliche Daten, Web-Shells und mehr. Der Tester kann dieses Repository einfach auf einen neuen Testcomputer übertragen und hat dann Zugriff auf alle Arten von Listen, die er benötigt.

Senden Sie Studio 13.0.1

Senden Sie Studio 13.0.1

Leistungsstarke integrierte PHP-Entwicklungsumgebung

SublimeText3 Linux neue Version

SublimeText3 Linux neue Version

SublimeText3 Linux neueste Version